King Fahd University of Petroleum and Minerals

Department of Mathematics

Math 225, Exam II, Term 241

- **1. [8 points]** Determine whether the set $S = \{f \in C[-2, 1]: f(-2) = 0 \text{ and } f(1) = 0\}$ is a subspace of C[-2,1], the vector space of all continuous functions on [-2, 1].
- **2. [12 points]** Find a basis for the subspace W of the vector space $M_{2\times 2}$ given by $W = \{A \in M_{2\times 2} : A^T = A\}.$
- **3. [7 points]** Let *V* be a vector space such that $V = Span(v_1, v_2, \dots, v_n)$. Show that if $v \in V$ and $v \neq v_i$ for $1 \leq i \leq n$, then the vectors v, v_1, v_2, \dots, v_n are linearly dependent.
- **4. [14 points]** Let $\mathcal{A} = \{1, x, x^2\}$ and $\mathcal{B} = \{1, 1 + x, 1 + x + x^2\}$ be two ordered bases for \mathbb{P}_3 , the vector space of all polynomials of degree less than 3.
 - a. Find the transition matrix from \mathcal{A} to \mathcal{B} .
 - b. Use part (a) to write $p(x) = 2 x + 3x^2$ in terms of the elements of \mathcal{B} .
- 5. [20 points] Let

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 3 & 4 & 9 & 0 & 7 \\ 2 & 3 & 5 & 1 & 8 \\ 1 & 1 & 4 & -1 & -1 \end{bmatrix}.$$

- a) Find a basis for N(A), the null space of A.
- b) Find a basis for Row(A), the row space of A.
- c) Find a basis for Col(A), the column space of A.
- d) Find rank(A).
- **6. [12 points]** Find the kernel and the range of the linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$L\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\x_1-x_2\end{bmatrix}.$$

7. [12 points] Consider the linear transformation $L: \mathbb{P}_3 \to \mathbb{P}_2$ defined by L(p(x)) = p'(x) + p(0).

- a. Find the matrix representation of *L* with respect to the ordered bases $\{x^2, x, 1\}$ and $\{2, 1 x\}$ for \mathbb{P}_3 and \mathbb{P}_2 , respectively.
- b. Use part (a) to find the coordinates of $L(4x^2 + 2x)$ with respect to the basis $\{2, 1 x\}$.

8. [15 points] True or False?

- a. The set $S = \{all \ polynomials \ of \ degree \ 2\}$ is a subspace of \mathbb{P}_4 , the set of all polynomials of degree less than 4.
- b. The set $B = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \right\}$ forms a basis for \mathbb{R}^3 .
- c. If $\dim(V) = 5$ and $V = Span(v_1, v_2, v_3, v_4, v_5)$, then the set $\{v_1, v_2, v_3, v_4, v_5\}$ is a basis for the vector space V.
- d. The mapping $L: M_{n \times n} \to M_{n \times n}$ defined by L(A) = A + I is a linear operator on $M_{n \times n}$.
- e. Let A and B be square matrices. If A is similar to B, then A^2 is similar to B^2 .

Good luck,

Ibrahim Al-Rasasi