
Exercise 1. Given the linear systems

$$\begin{array}{ll} x_1 + 2x_2 + x_3 = 2 & x_1 + 2x_2 + x_3 = -1 \\ \text{(i)} \quad -x_1 - x_2 + 2x_3 = 3 & \text{(ii)} \quad -x_1 - x_2 + 2x_3 = 2 \\ 2x_1 + 3x_2 = 0 & 2x_1 + 3x_2 = -2 \end{array}$$

If $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is the solution of (i) and $\begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$ is the solution of (ii), then $aa' + bb' + cc' =$

- (a) -10
- (b) -7
- (c) -9
- (d) 5
- (e) 11

Exercise 2. Let A be an $n \times n$ matrix such that $A^k = 0$, where $k \geq 2$. Then, $I - A$ is nonsingular with $(I - A)^{-1} =$

- (a) $I - A^{-1}$
- (b) $I + A^{k-1}$
- (c) $I + A^{k-2}$
- (d) $I + A + A^2 + \dots + A^{k-1}$
- (e) $I + A + A^2 + \dots + A^{k-2}$

Exercise 3. Let $A = \begin{pmatrix} -2 & 1 & 2 \\ 4 & 1 & -2 \\ -6 & -3 & 4 \end{pmatrix}$ and assume the LU factorization of the matrix A is given by: $L = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a & a_{22} & a_{23} \\ b & c & a_{33} \end{pmatrix}$ and $U = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & d \end{pmatrix}$.

Then, $(a, b, c, d) =$

- (a) $(-2, 3, -2, -2)$
- (b) $(-2, 3, -2, 2)$
- (c) $(-2, 3, 2, 2)$
- (d) $(2, 3, 2, 2)$
- (e) $(2, -3, 2, 2)$

Exercise 4. Let $A = \begin{pmatrix} a-x & b & c \\ 1 & -x & 0 \\ 0 & 1 & -x \end{pmatrix}$. Then, $\det(A) =$

- (a) $x^3 + ax^2 + bx + c$
- (b) $x^3 + ax^2 + bx - c$
- (c) $-x^3 - ax^2 + bx + c$
- (d) $-x^3 + ax^2 - bx + c$
- (e) $-x^3 + ax^2 + bx + c$

Exercise 5. Recall that a set $(V, +, \cdot)$ is called a vector space over \mathbb{R} if V is closed under addition and scalar multiplication and the following axioms are satisfied:

- A1 $x + y = y + x$ for any x and y in V .
- A2 $(x + y) + z = x + (y + z)$ for any $x, y, z \in V$.
- A3 There exists an element $0 \in V$ such that $x + 0 = x$ for each $x \in V$.
- A4 For each $x \in V$, there exists an element $-x \in V$ such that $x + (-x) = 0$.
- A5 $\alpha(x + y) = \alpha x + \alpha y$ for each scalar $\alpha \in \mathbb{R}$ and any $x, y \in V$.
- A6 $(\alpha + \beta)x = \alpha x + \beta x$ for any scalars $\alpha, \beta \in \mathbb{R}$ and any $x \in V$.
- A7 $(\alpha\beta)x = \alpha(\beta x)$ for any scalars $\alpha, \beta \in \mathbb{R}$ and any $x \in V$.
- A8 $1 \cdot x = x$ for all $x \in V$.

Let \mathbb{Z} denote the set of all integers with addition defined in the usual way, and define scalar multiplication, denoted \circ , by

$$\alpha \circ k = [\alpha] \cdot k \quad \text{for all } k \in \mathbb{Z},$$

where $[\alpha]$ denotes the greatest integer less than or equal to α . For example,

$$2.25 \circ 4 = [2.25] \cdot 4 = 2 \cdot 4 = 8.$$

$(\mathbb{Z}, +, \circ)$ is Not a vector space. Which axioms **fail** to hold?

- (a) A2 and A6
- (b) A2 and A7
- (c) A5 and A6
- (d) A5 and A7
- (e) A6 and A7

Exercise 6. In the vector space $C[0,1]$, the Wronskian $W[x, \cos(\pi x), \sin(\pi x)] =$

- (a) 0
- (b) x
- (c) π^3
- (d) $\pi^2 x$
- (e) $\pi^3 x$

Exercise 7. Let $A = \begin{pmatrix} 2 & 3 & 6 \\ 1 & 2 & -1 \\ -2 & -3 & -6 \end{pmatrix}$. Then, the null space of A is given by $N(A) =$

(a) $\text{Span}\left(\begin{pmatrix} -30 \\ 16 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}\right)$

(b) $\text{Span}\left(\begin{pmatrix} 15 \\ -8 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix}\right)$

(c) 0

(d) $\text{Span}\left(\begin{pmatrix} -15 \\ 8 \\ 1 \end{pmatrix}\right)$

(e) $\text{Span}\left(\begin{pmatrix} 5 \\ 8 \\ 0 \end{pmatrix}\right)$

Exercise 8. Given the vectors

$$\mathbf{x}_1 = \begin{pmatrix} -4 \\ 6 \\ -2 \\ 0 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 6 \\ -9 \\ 3 \\ 0 \end{pmatrix}, \quad \mathbf{x}_4 = \begin{pmatrix} -2 \\ 3 \\ -1 \\ 0 \end{pmatrix}$$

The dimension of $\text{Span}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ is equal to:

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

Exercise 9. Let P_3 denote the space of all real polynomials of degree ≤ 2 . Let S be the subspace of P_3 consisting of all polynomials $p(x)$ such that $p(0) = 0$, and let T be the subspace of P_3 consisting of all polynomials $q(x)$ such that $q(1) = 0$. If $\dim(S) = s$, $\dim(T) = t$, and $\dim(S \cap T) = r$, then $(s, t, r) =$

- (a) (1, 2, 1)
- (b) (2, 1, 1)
- (c) (2, 2, 0)
- (d) (2, 2, 1)
- (e) (2, 3, 1)

Exercise 10. Let

$$\mathbf{v}_1 = \begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$$

The transition matrix from the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to the basis $F = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is

- (a) $\begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & -1 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
- (d) $\begin{pmatrix} 1 & -1 & -2 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
- (e) $\begin{pmatrix} 1 & -1 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$

Exercise 11. Let

$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{pmatrix}$$

Find the dimension of the column space of A , and identify a basis for it.

- (a) Dimension = 2, Basis = Columns 1 and 2
- (b) Dimension = 3, Basis = Columns 1, 2, and 5
- (c) Dimension = 4, Basis = Columns 1, 2, 3, and 5
- (d) Dimension = 3, Basis = Columns 1, 3, and 4
- (e) Dimension = 3, Basis = Columns 2, 3, and 4

Exercise 12. Let

$$A = \begin{pmatrix} -3 & 1 & 3 & 4 \\ 1 & 2 & -1 & -2 \\ -3 & 8 & 4 & 2 \end{pmatrix}.$$

Then:

- (a) $\text{rank}(A) = 1$, $\text{nullity}(A) = 3$
- (b) $\text{rank}(A) = 2$, $\text{nullity}(A) = 1$
- (c) $\text{rank}(A) = 2$, $\text{nullity}(A) = 2$
- (d) $\text{rank}(A) = 3$, $\text{nullity}(A) = 0$
- (e) $\text{rank}(A) = 3$, $\text{nullity}(A) = 1$