

CODE 1

Exercise 1. Let $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear operator defined by

$$L(\mathbf{x}) = \begin{pmatrix} x_1 - x_3 \\ x_2 - x_3 \\ x_1 - x_2 \end{pmatrix}$$

Then, the kernel and range of L are given by

- (a) $\ker(L) = \text{Span}(e_1, e_2, e_3)$, $\text{range}(L) = \text{Span}(e_1 + e_3, e_2 - e_3)$
- (b) $\ker(L) = \text{Span}(e_1 + e_2 + e_3)$, $\text{range}(L) = \text{Span}(e_1 - e_3, e_2 - e_3)$
- (c) $\ker(L) = \text{Span}(e_1, e_2, e_3)$, $\text{range}(L) = \text{Span}(e_1 + e_3, e_2 + e_3)$
- (d) $\ker(L) = \text{Span}(e_1 + e_2 + e_3)$, $\text{range}(L) = \text{Span}(e_1 + e_3, e_2 - e_3)$
- (e) $\ker(L) = \text{Span}(e_1, e_2)$, $\text{range}(L) = \text{Span}(e_1 - e_3, e_2 - e_3)$

Exercise 2. Let P_n denote the space of all real polynomials of degree $\leq n - 1$, for any integer $n \geq 1$. Let D be the differentiation operator on P_3 , and consider the subspace $S = \{p \in P_3 \mid p(0) = 0\}$. Then:

- (a) $D : S \rightarrow P_3$ is onto
- (b) $D : S \rightarrow P_3$ is one-to-one
- (c) $D : P_3 \rightarrow P_2$ is one-to-one
- (d) $D : P_3 \rightarrow P_2$ is NOT onto
- (e) None of the above statements is true

Exercise 3. Let $L: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the linear transformation defined by $L(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ x_2 - x_3 \end{pmatrix}$ and let $E = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $F = \{\mathbf{b}_1, \mathbf{b}_2\}$, where

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \mathbf{b}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

The matrix representing L with respect to the ordered bases E and F is given by

(a) $\begin{pmatrix} -3 & 2 \\ -5 & 4 \\ 0 & 0 \end{pmatrix}$

(b) $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 0 & 0 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 0 \end{pmatrix}$

(e) $\begin{pmatrix} -3 & -5 & 0 \\ 2 & 4 & 0 \end{pmatrix}$

Exercise 4. Let L be the operator on P_3 defined by $L(p(x)) = xp'(x) + p''(x)$. The matrix representing L with respect to the ordered basis $\{1, x, x+x^2\}$ is given by

(a) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

(b) $\begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$

(c) $\begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(e) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Exercise 5. Let x and y be *linearly independent* vectors in \mathbb{R}^2 . Suppose that $\|x\| = 2$ and $\|y\| = \frac{1}{2}$. Which of the following is a *possible* value for $x^T y$?

Exercise 6. Let $A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 0 & -6 \end{pmatrix}$ and let $R(A)$ denote the column space of A . Then, the *orthogonal complement* of $R(A)$ is spanned by

(a) $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ (b) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$ (c) $\begin{pmatrix} 6 \\ -2 \end{pmatrix}$ (d) $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ (e) $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$

Exercise 7. Given n distinct real numbers x_1, \dots, x_n , for each pair of polynomials $p, q \in P_n$, define the inner product by

$$\langle p, q \rangle = \sum_{i=1}^n p(x_i)q(x_i).$$

In P_5 , let $x_i = \frac{i-1}{2}$ for $i = 1, 2, 3, 4, 5$. Then, the *length* (or *norm*) of the polynomial $p(x) = 4x$ is equal to

(a) $\sqrt{30}$ (b) $\sqrt{31}$ (c) $\sqrt{32}$ (d) $\sqrt{120}$ (e) $\sqrt{124}$

Exercise 8. Let $x \in \left(0, \frac{\pi}{2}\right)$ and let A be an $m \times m$ matrix of the form

$$A = \begin{pmatrix} 1 & -\cos x & -\cos x & \cdots & -\cos x & -\cos x \\ 0 & \sin x & -\sin x \cos x & \cdots & -\sin x \cos x & -\sin x \cos x \\ 0 & 0 & \sin^2 x & \cdots & -\sin^2 x \cos x & -\sin^2 x \cos x \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sin^{m-2} x & -\sin^{m-2} x \cos x \\ 0 & 0 & 0 & \cdots & 0 & \sin^{m-1} x \end{pmatrix}$$

The Frobenius norm $\|A\|_F$ of this matrix is equal to

(a) 1 (b) $\sqrt{m-1}$ (c) $m-1$ (d) \sqrt{m} (e) m

Exercise 9. Let $\mathbf{u}_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{\sqrt{3}} \\ \sqrt{\frac{2}{3}} \end{pmatrix}$ and $\mathbf{u}_2 = \begin{pmatrix} \sqrt{\frac{2}{3}} \\ -\frac{1}{\sqrt{3}} \end{pmatrix}$ be a basis of \mathbb{R}^2 . Write the vector $\mathbf{x} = \begin{pmatrix} \sqrt{3} \\ \sqrt{6} \end{pmatrix}$ in the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ as $\mathbf{x} = a\mathbf{u}_1 + b\mathbf{u}_2$. Then, $a + b =$

(a) 2 (b) 3 (c) $3 + 2\sqrt{2}$ (d) $2\sqrt{2}$ (e) $2 + 2\sqrt{3}$

Exercise 10. Let $A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$.

An *orthonormal* basis for the column space of A is given by

(a) $\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$ (b) $\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$ (c) $\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{5}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, 2 \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$
 (d) $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{5}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, 2 \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$ (e) $\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$

Exercise 11. In $C[-\pi, \pi]$, consider the inner product defined by

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Use an orthonormal set in $C[-\pi, \pi]$ to evaluate $\int_{-\pi}^{\pi} \cos^4(x)dx =$

(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) π (e) $\frac{5\pi}{4}$

Exercise 12. Theorem Let p_0, p_1, \dots be a sequence of orthogonal polynomials. Let a_i denote the lead coefficient of p_i for each i , and define $p_{-1}(x)$ to be the zero polynomial. Then

$$\alpha_{n+1}p_{n+1}(x) = (x - \beta_n)p_n(x) - \alpha_n\gamma_n p_{n-1}(x) \quad (n \geq 0)$$

where

$$\alpha_0 = \gamma_0 = 1, \quad \alpha_n = \frac{a_{n-1}}{a_n}, \quad \beta_n = \frac{\langle p_{n-1}, xp_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle}, \quad \gamma_n = \frac{\langle p_n, p_n \rangle}{\langle p_{n-1}, p_{n-1} \rangle} \quad (n \geq 1). \blacksquare$$

Now, let p_0, p_1, p_2 be orthogonal polynomials with respect to the inner product

$$\langle p(x), q(x) \rangle = \int_{-1}^1 \frac{p(x)q(x)}{1+x^2} dx.$$

Assume all polynomials have lead coefficient -1 . If we use the above theorem to calculate p_1 and p_2 , then a correct choice for (p_1, p_2) is:

(a) $(p_1, p_2) = (-x - 1, -x^2 + 1)$
 (b) $(p_1, p_2) = (-x + 1, -x^2 - \frac{2}{\pi})$
 (c) $(p_1, p_2) = (-x, -x^2 + \frac{2}{\pi} - 1)$
 (d) $(p_1, p_2) = (-x, -x^2 + \frac{4}{\pi} - 1)$
 (e) $(p_1, p_2) = (-x, -x^2 - \frac{4}{\pi} + 1)$