King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Final Exam – Math 323 (Term 212) (Duration = 3 hours | Number of Questions = 24) (**CODE** 001)

Exercise 2. In the group $\frac{\mathbb{Z}}{69\mathbb{Z}}$, let H_1 and H_2 be two distinct non-trivial proper subgroups. Then, $|H_1 \cup H_2| =$

- a) 26
- b) 25
- c) 69
- d) 45
- e) 46

Exercise 3. Let *G* be a group of order 4. Which one of the following statements is WRONG?

- a) There must be at least one subgroup of *G* of order 2
- b) *G* may or may not be cyclic
- c) There must be an element of *G* of order 4
- d) G must be abelian
- e) Every proper subgroup of *G* is cyclic

Exercise 4. In the group $\frac{\mathbb{Z}}{70\mathbb{Z}}$, let *H* be a subgroup of order 10. If $H = \langle \overline{n} \rangle$ such that $n \leq 60$, then the largest possible value for *n* is equal to:

a) 7

b) 10

- c) 21
- d) 49
- e) 56

Exercise 5. Let S_{10} denote the symmetric group of degree 10 and let $\sigma \in S_{10}$ with $\sigma = \alpha_1 \alpha_2 \cdots \alpha_k$ where the α_i 's are disjoint r_i -cycles such that $r_i \ge 3$, for each i, and $r_1 + r_2 + \cdots + r_k = 10$. If σ is odd, then the largest possible order for σ is equal to:

- a) 6
- b) 8
- c) 12
- d) 21
- e) 30

Exercise 6. Let *G* be a non-abelian group of order *pq*, where *p* < *q* are prime numbers. Then:

- a) Z(G) is trivial
- b) Z(G) has an element of order q

c)
$$|Z(G)| = p$$

d)
$$\frac{G}{Z(G)}$$
 is cyclic

e)
$$\left|\frac{G}{Z(G)}\right| = 1$$

Exercise 7. Let *G* be a group of order n = 2pq, where $2 \leq p \leq q$ are prime numbers and let *H* be a non-cyclic subgroup of *G* such that |H| is odd. If *x* is an element of *G* of order 2p, then

- a) |xH| = 2
- b) |xH| = p
- c) |xH| = q
- d) xH = Hx
- e) xH = H

Exercise 8. Let G = U(66) be the group under multiplication modulo 66. In *G*, we have: $5^2, 5^3, 5^4, 5^5, 5^6, 5^7, 5^8, 5^9, 5^{10} = 25, 59, 31, 23, 49, 47, 37, 53, 1$, respectively ; $17^2, 17^3, 17^4, 17^5, 17^6, 17^7, 17^8, 17^9, 17^{10} = 25, 29, 31, 65, 49, 41, 37, 35, 1$, respectively ; $23^2 = 43^2 = 65^2 = 1$. Then:

a)
$$G \cong \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}}$$
 and $G = \langle 43 \rangle \oplus \langle 5 \rangle$
b) $G \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \frac{\mathbb{Z}}{11\mathbb{Z}}$ and $G = \langle 43 \rangle \oplus \langle 5 \rangle$
c) $G \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{10\mathbb{Z}}$ and $G = \langle 23 \rangle \oplus \langle 5 \rangle$
d) $G \cong \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}}$ and $G = \langle 65 \rangle \oplus \langle 5 \rangle$
e) $G \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{10\mathbb{Z}}$ and $G = \langle 23 \rangle \oplus \langle 17 \rangle$

Exercise 9. Let *G* be a non-abelian group of order p^3 , where *p* is prime.

a)
$$Z(G) \cong \frac{\mathbb{Z}}{p\mathbb{Z}}$$

b) Z(G) is trivial

c)
$$Z(G) \cong \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{p\mathbb{Z}}$$

d) $Z(G) \cong \frac{\mathbb{Z}}{p^2\mathbb{Z}}$

e) None of these statements are true

Exercise 10. Which one of the following statements is WRONG?

a)
$$\frac{\mathbb{Z}}{3\mathbb{Z}}[i]$$
 is a field
b) $\frac{\mathbb{Z}}{17\mathbb{Z}}[i]$ is NOT a field
c) $\frac{\mathbb{Z}}{11\mathbb{Z}}[i]$ is a finite ring
d) $\frac{\mathbb{Z}}{13\mathbb{Z}}[i]$ is a field
e) $\frac{\mathbb{Z}}{5\mathbb{Z}}[i]$ is NOT an integral domain

Exercise 11. Consider the ring $R := \mathbb{Z} \times \frac{\mathbb{Z}}{p\mathbb{Z}}$, where *p* is a prime number. Let *Q* be a prime ideal of *R* and let $(n,\overline{m}) \in Q$ such that $n \ge 1$ and $1 \le m \le p-1$. If $n_o = Smallest$ possible value for *n* and $m_o = Largest$ possible value for *m*, then $n_o + m_o$ is equal to:

a) p - 2

4

- b) *p*−1
- c) *p*
- d) p + 1
- e) p + 2

Exercise 12. Which one of the following statements is CORRECT?

- a) In the ring $\frac{\mathbb{Z}}{5\mathbb{Z}}[i]$, the principal ideal $(1+i)\frac{\mathbb{Z}}{5\mathbb{Z}}[i]$ is prime
- b) $\frac{\mathbb{Z}[i]}{i\mathbb{Z}[i]}$ is isomorphic to \mathbb{Z}
- c) The ring of 2×2 matrices over $\frac{\mathbb{Z}}{2\mathbb{Z}}$ is a division ring
- d) The ideal $0 \times \frac{\mathbb{Z}}{2\mathbb{Z}}$ is not maximal in the ring $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$
- e) In the ring $\mathbb{Z}[i]$, the principal ideal $(1-i)\mathbb{Z}[i]$ is maximal

Exercise 13. Consider the commutative ring $R := \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} | a, b \in \mathbb{Z} \right\}$ and the two ideals of R $I := \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} | a \in \mathbb{Z} \right\}$ and $J := \left\{ \begin{pmatrix} a & -a \\ -a & a \end{pmatrix} | a \in \mathbb{Z} \right\}$. Consider the mapping $\phi : R \longrightarrow \mathbb{Z}$; $\begin{pmatrix} a & b \\ b & a \end{pmatrix} \mapsto a + b$. Which one of the following statements is WRONG?

- a) ϕ is a ring homomorphism
- b) *I* is a prime ideal of *R*

c)
$$\frac{R}{I} \cong \mathbb{Z}$$

- d) $Ker(\phi) = I$
- e) $\phi(R) = \mathbb{Z}$

Exercise 14. Let *n* be a positive integer with decimal representation *ababc*. If *n* is divisible by 7 and 3a + b = 12, then *c* is equal to:

a) 1

- b) 2
- c) 3
- d) 4
- e) 5

Exercise 15. In $\frac{\mathbb{Z}}{13\mathbb{Z}}[X]$, let \bar{r} be the remainder of the division of X^n by X + 5, with $0 \le r \le 12$. If n = 43, then r is equal to:

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

Exercise 16. The equation $x^{70} = 1$ (*modulo* 61) has

- a) 6 distinct solutions
- b) 10 distinct solutions
- c) 11 distinct solutions
- d) 14 distinct solutions
- e) 15 distinct solutions

Exercise 17. Let *F* be a finite field of characteristic *p*.

a)
$$x^{p} = 1$$
, $\forall x \in F$
b) $F \cong \frac{\mathbb{Z}}{p\mathbb{Z}}$
c) $p \le |F|$
d) $x^{p} = x$, $\forall x \in F$

e) $F \times F$ is a field of characteristic p

Exercise 18. Which one of the following polynomials is NOT irreducible in Q[X]?

- a) $2X^4 + 4X^2 + 2$
- b) $X^3 + 2X^2 + X 1$
- c) $2X^3 + X^2 + 3X + 2$
- d) $2X^3 + 4X^2 + 6X + 8$
- e) $X^4 + 4X^2 + 6$

Exercise 19. Which one of the following factor rings is a field?

a)
$$\frac{\mathbb{Z}_{3}[X]}{(X^{4}+1)}$$

b) $\frac{\mathbb{Z}_{3}[X]}{(X^{4}-1)}$
c) $\frac{\mathbb{Z}_{3}[X]}{(X^{4}+2X+2)}$
d) $\frac{\mathbb{Z}_{3}[X]}{(X^{4}+2X+1)}$

e) No one of these factor rings is a field

Exercise 20. The polynomial $f := X^2 + 1$ is NOT irreducible in

- a) $\mathbb{Z}_{11}[X]$
- b) $\mathbb{Z}_{19}[X]$
- c) $\mathbb{Z}_{23}[X]$
- d) $\mathbb{Z}_{31}[X]$
- e) *f* is irreducible in all these polynomial rings

Exercise 21. The polynomial $X^4 - X^2 + 1$ is NOT irreducible over

- a) Q
- b) $\mathbb{Q}[\sqrt{2}]$
- c) $\mathbb{Q}[\sqrt{3}]$
- d) $\mathbb{Q}[i]$
- e) *f* is irreducible over all these fields

Exercise 22. The ring $\frac{\mathbb{Q}[X]}{(X^3 - X^2 - 2X + 2)}$ is isomorphic to

- a) Q×Q[√2]
 b) Q×Q[*i*]
- c) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$
- d) ℚ×ℂ
- e) ℚ×ℝ

Exercise 23. Let $f = 1 + X + X^2 + \dots + X^{p-1}$, where *p* is prime, and consider the ring $R = \frac{\mathbb{Q}[X]}{(f^p)}$.

- a) $\overline{X^p p}$ is nilpotent and $\overline{X^p 1}$ is a unit in *R*
- b) $\overline{X^p p}$ and $\overline{X^p 1}$ are units in *R*
- c) $\overline{X^p p}$ and $\overline{X^p 1}$ are nilpotent in *R*
- d) Neither $\overline{X^p p}$ nor $\overline{X^p 1}$ is a unit or nilpotent in *R*
- e) None of these statements are true

Exercise 24. Let *R* be a commutative ring with the property: $\forall r \in R \exists s \in R$ such that $r = sr^2$. Let *I* be a finitely generated ideal of *R*. Then:

- a) *I* is prime
- b) *I* is principal
- c) I = (0) or I = R
- d) $I^2 = 0$
- e) The quotient ring $\frac{R}{I}$ has one unique maximal ideal