Math 323 - 232 First Major Exam Feb. 19, 2024

Name:

ID #:

Q1) a) For any integer n > 2, show that there are at least two elements in U(n) that satisfy $x^2 = 1$.

b) Prove that in a group, $(ab)^2 = a^2b^2$ if and only if ab = ba.

Q2) a) Let H be a nonempty finite subset of a group G. If H is closed under the operation of G, prove that H is a subgroup of G.

b) Find the centralizer C(H) of H in G. (H is the reflection of the square about the horizontal axis.)

- Q3) a) Suppose that G is a cyclic group of order 24and $a \in G$. If $a^8 \neq e$ and $a^{12} \neq e$, show that $\langle a \rangle = G$.
 - b) Determine the subgroup lattice of the group D_4 .

Q4) a) Show that the set A_n of all permutations of the group S_n is a subgroup of S_n of order $\frac{n!}{2}$.

- b) How many elements of order 5 are in S_7 .
- c) Let $\beta \in S_9$ and suppose $\beta^4 = (2143567)$. Find β .

- Q5) a) State Cayley's Theorem.
 - b) Calculate the left regular representation group $\overline{U(8)}$.
 - c) Show that Z has infinitely many subgroups isomorphic to Z.