Problem 1. [20] Let *R* be an integral domain and consider the subring of $M_2(R)$ given by

$$A := \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in R \right\}.$$

- (1) Show that *A* is isomorphic to $R \times R$ as groups.
- (2) Show that *A* is NOT isomorphic to $R \times R$ as rings.
- (3) Show that A is isomorphic to $\frac{R[X]}{(X^2)}$ as rings.
- (4) Assume $R = \frac{\mathbb{Z}}{p\mathbb{Z}}$, where *p* is a prime number, and let Nil(*A*) and Idem(*A*) denote the sets of all nilpotent and idempotent elements of *A*, respectively. Find |Nil(A)| and |Idem(A)|.

Problem 2. [20] Let $p \leq q$ be prime numbers.

- (1) Show that the polynomial ring $\frac{\mathbb{Z}}{p^2\mathbb{Z}}[X]$ has infinitely many units.
- (2) Solve the equation $x^q = 1$ in $\frac{\mathbb{Z}}{pq\mathbb{Z}}$.
- (3) Find a root for the polynomial $f := X^p q$ over $\frac{\mathbb{Z}}{va\mathbb{Z}}$.

(4) Prove that
$$\frac{\mathbb{Z}}{pq\mathbb{Z}} \cong \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{q\mathbb{Z}}$$
 as rings.

Problem 3.

- (1) Show that a positive integer is divisible by 9 if and only if the sum of its digits is divisible by 9.
- (2) Use (1) to find the smallest 20-digit number that is divisible by 9?
- (3) Show that a positive integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11.
- (4) Use (3) to find the smallest 20-digit number that is divisible by 11.

Problem 4. [20] Let *A* be a commutative ring such that every proper ideal is contained in a maximal ideal. Let *N* denote the intersection of all prime ideals of *A* and *J* denote the intersection of all maximal ideals of *A*.

- (1) Let x be a nilpotent element of A. Show that 1 + x is a unit of A, and deduce that the sum of a nilpotent element and a unit is a unit.
- (2) Show that $x \in J$ if and only if 1 ax is a unit for all $a \in A$.
- (3) Assume that every ideal not contained in N contains a non-zero idempotent. Prove that N = J.
- (4) Assume that every $x \in A$ satisfies $x^n = x$, for some $n \ge 2$. Prove that every prime ideal is maximal.

Problem 5. [20] Consider the following polynomials in $\mathbb{Q}[X]$:

(1) $f_1 = X^3 + 2X^2 + X - 1$ (2) $f_2 = 2X^3 + X^2 + 3X + 2$ (3) $f_3 = X^4 + 4X^2 + 6$ (4) $f_4 = 2X^4 + 4X^2 + 2$ (5) $f_5 = X^5 - X^3 + 3X^2 - 3$

Determine which of these polynomials is irreducible or reducible over Q, and explain your reasoning.