King Fahd University of Petroleum and Minerals Department of Mathematics

Math 323 (Term 242)

Final Exam (150 minutes - 20 Exercises)

Code 1

Exercise 1. Let *n* be a positive integer with decimal representation $a_k a_{k-1} \dots a_1 a_0$. Then, in the ring $\frac{\mathbb{Z}}{16\mathbb{Z}}$, *n* is equal to:

(a) $a_0 + 2a_1 - 8a_3$ (b) $8a_{k-3} - 4a_{k-2} + 2a_{k-1} - a_k$ (c) $a_0 - 10a_1 + 4a_2$ (d) $a_0 + 10a_1 + 4a_2 + 8a_3$ (e) $a_k + 10a_{k-1} + 4a_{k-2} + 8a_{k-3}$

Exercise 2. Let $\{\overline{s_1}, \overline{s_2}, \dots, \overline{s_n}\}$ denote the set of all distinct solutions of the equation $x^{42} = 1 \pmod{67}$, where $1 \le s_1 < s_2 < \dots < s_n \le 66$. Then, $s_1 + s_2 + \dots + s_n =$

(a) 67
(b) 134
(c) 201
(d) 268
(e) 402

Exercise 3. The number of all irreducible monic quadratics in $\frac{\mathbb{Z}}{7\mathbb{Z}}[X]$ is equal to

(a) 21

(**b**) 7

(c) 0

- (**d**) 28 (**e**) 49
- (e) 49

Exerc	ise 4.	In the gro	oup $\frac{\mathbb{Z}}{9\mathbb{Z}}\oplus$	$\frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}}$, the num	ber of elen	nents of or	rder 9 is e	qual to
(a)	18								
(b)	24								
(c)	36								
(d)	48								
(e)	54								

Exercise 5. Let *G* be an abelian group of order 24, which has an element of order 12 and two elements of order 2. Then, *G* is isomorphic to:

Exercise 6. Let $G := U(22) = \{1 \le k \le 21 \mid (k, 22) = 1\}$ be the group under multiplication modulo 22. In *G*, we have $3^5 = 5^5 = 9^5 = 1$, $7^2 = 5$, $13^2 = 15$, $17^2 = 3$, $21^2 = 1$, and $7^5 = 13^5 = 17^5 = 21$. Then

(a)
$$G = \langle 9 \rangle$$

(b) $G = \langle 17 \rangle$
(c) $G \cong \langle 3 \rangle \times \langle 5 \rangle$
(d) $G \cong \langle 3 \rangle \times \langle 7 \rangle$
(e) $G \cong \langle 13 \rangle \times \langle 21 \rangle$

Exercise 7. Let $G := \{1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44\}$ be a group under multiplication modulo 45. Then:

- (a) *G* is the internal direct product of $\langle 11 \rangle$ and $\langle 16 \rangle$
- (**b**) *G* is the internal direct product of $\langle 11 \rangle$ and $\langle 26 \rangle$
- (c) *G* is the internal direct product of $\langle 16 \rangle$ and $\langle 44 \rangle$
- (d) *G* is the internal direct product of $\langle 41 \rangle$ and $\langle 26 \rangle$
- (e) *G* is the internal direct product of $\langle 41 \rangle$ and $\langle 44 \rangle$

Exercise 9. Let p < q be two primes and *G* a finite group of order p^2q . Let *H* be a normal subgroup of *G* of order *p* and let $c(H) := \{g \in G \mid ghg^{-1} = h , \forall h \in H\}$ the centralizer of *H* in *G* (which is a normal subgroup of *G*). Then:

(a) |c(H)| = p(b) |c(H)| = q(c) $|c(H)| = p^2$ (d) |c(H)| = pq(e) $|c(H)| = p^2q$

Exercise 10. In $\frac{\mathbb{Z}}{11\mathbb{Z}}[X]$, the remainder of the division of X^{53} by X + 3 is equal to:

(a) 2(b) 10

- (c) 4
- (**d**) 8
- (**e**) 6

Exercise 11. Let A_8 denote the alternating group of degree 8 and let $\sigma \in A_8$ with $\sigma = \alpha_1 \alpha_2 \dots \alpha_k$, where the α_i 's are non-trivial **disjoint** r_i -cycles ($r_i \ge 2$) and $r_1 + r_2 + \dots + r_k = 8$. Let a and b denote the maximum order and minimum order, respectively, σ can have. Then, a + b =

- (a) 9(b) 10(c) 17
- (**d**) 21
- (e) 19

Exercise 12. Let σ be an *odd* permutation of degree 10 such that $\sigma = \alpha_1 \alpha_2 \dots \alpha_k$, where the α_i 's are non-trivial disjoint r_i -cycles ($r_i \ge 2$) and $r_1 + r_2 + \dots + r_k = 10$. Then, all possible values for k are:

(a) 3, 5
(b) 1, 3, 5
(c) 1, 2, 3, 4, 5
(d) 2, 4, 5
(e) 2, 4

Exercise 13. Let A_{11} denote the alternating group of degree 11 and let $\sigma \in A_{11}$ with $\sigma = \alpha_1 \alpha_2 \alpha_3$, where the α_i 's are non-trivial disjoint r_i -cycles ($r_i \ge 2$) and $r_1 + r_2 + r_3 = 11$. If $|\alpha_1| \le |\alpha_2| \le |\alpha_3|$, then $|\sigma| =$

(a) 1 or 11
(b) 6 or 20
(c) 6 or 14
(d) 12 or 15
(e) 14 or 20

Exercise 14. Let *G* be a group of order 385. If $x \in G \setminus \{1\}$ such that |x| is **not prime** and two of x^5, x^7, x^{40} are equal, then $|x^{42}| =$

(a) 5
(b) 7
(c) 11
(d) 35
(e) 77

Exercise 15. Let $G := \frac{\mathbb{Z}}{11\mathbb{Z}} \oplus \frac{\mathbb{Z}}{11\mathbb{Z}}$ and let *n* denote the number of subgroups of *G* of order 11. Then (a) n = 1(b) n = 10(c) n = 11(d) n = 12(e) n = 120

Exercise 16. Let $f := X^p + p^2 X + p$ and $g := X^{p+1} - X$, where p is a prime number. Consider the ring $R := \frac{\mathbb{Q}[X]}{(\phi^2)}$, where $\phi := 1 + X + X^2 + \dots + X^{p-1}$.

(a) \overline{f} and \overline{g} are units in *R*

- **(b)** \overline{f} and \overline{g} are nilpotent in *R*
- (c) \overline{f} is nilpotent and \overline{g} is a unit in *R*
- (d) f is a unit and \overline{g} is nilpotent in R
- (e) None of these statements are true

Exercise 17. The ring $\frac{\mathbb{Q}[X]}{(X^4 - 12X^2 + 27)}$ is isomorphic to:

(a) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ (b) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\sqrt{3})$ (c) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(i)$ (d) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ (e) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\sqrt{3}) \times \mathbb{Q}(\sqrt{3})$

Exercise 18. The polynomial $f := X^2 + 1$ is irreducible in

Exercise 19. Which one of the following statements is CORRECT?

(a)
$$\frac{\mathbb{Z}}{3\mathbb{Z}}[i]$$
 is NOT a field
(b) $\frac{\mathbb{Z}}{5\mathbb{Z}}[i]$ is an integral domain
(c) $\frac{\mathbb{Z}}{11\mathbb{Z}}[i]$ is an infinite ring
(d) $\frac{\mathbb{Z}}{13\mathbb{Z}}[i]$ is a field
(e) $\frac{\mathbb{Z}}{17\mathbb{Z}}[i]$ is NOT a field

Exercise 20. The polynomial $f := X^4 + 1$ is irreducible over

(a)
$$\frac{\mathbb{Z}}{2\mathbb{Z}}$$

- (b) **R**
- (c) $\mathbb{Q}[\sqrt{2}]$
- (**d**) Q[*i*]
- (e) *f* is NOT irreducible over all these fields