King Fahd University of Petroleum & Minerals Department of Mathematics Spring 2025 (Term 242) SYLLABUS

Course : Math 323

Title : Modern Algebra I

Textbook : Contemporary Abstract Algebra, by J. A. Gallian, 8th edition.

Objective : Introduce students to the basic notions and techniques of Abstract Algebra.

Weeks	Part	Chapters	Titles		
1 – 9	Groups	2	Groups		
		3	Finite groups and subgroups		
		4	Cyclic groups		
		5	Permutation groups		
		6	Isomorphisms		
		7	Cosets and Lagrange's Theorem		
		8	External direct products		
		9	Normal subgroups and factor groups		
		10	Group homomorphisms		
		11	Fundamental theorem of finite abelian groups		
	Rings	12	Introduction to rings		
10 – 15		13	Integral domains		
		14	Ideals and factor rings		
		15	Ring homomorphisms		
		16	Polynomial rings		
		17 4.2	Factorization of polynomials over a field [from W. K. Nicholson's Book]		
		18 4.3	Factor rings of polynomials over a field [from W. K. Nicholson's Book]		

Saudi Founding Day holiday: Sunday, February 23

Eid Al-Fitr Holidays: Sunday, March 23 – Thursday, April 03

Grading Policy (*)	Weig ht	Dates		Homework (**)		
Homework	40	-		HW 1/ 10	Ch. 2, 3, 4	10 Pbs
Exam 1 (Ch. 2 – 11)	80/60	Tuesday, March 11, 7 p.m. 4-149		HW 2/ 10	Ch. 5, 6, 7, 8	10 Pbs
Exam 2 (Ch. 12 – 16)	80/60	Tuesday, April 29, 7 p.m. 4-149		HW 3/ 10	Ch. 9, 10, 11	10 Pbs
Final Exam (Comp.)	120	tba		HW 4/ 10	Ch. 12, 13, 14	10 Pbs
TOTAL	300			HW 5/ 10	Ch. 15, 16	10 Pbs

(*) No Makeup is given under any circumstance. If a student misses an assessment for a legitimate reason (e.g., medical emergency), his final grade will be determined based on the non-missed assessments.

(**) The homework should be emailed (in PDF) to the TA (see coordinates below).

Learning Outcomes: Upon completion of this course, students should be able to

- Define normal subgroups, factor groups, homomorphisms
 - Discuss the fundamental theorem of finite Abelian groups
 - Explain integral domains and fields
 - Define ideals, factor rings and ring homomorphisms
 - Explain factorization of polynomials over a field, factor rings of polynomials over a field
 - Define irreducible elements and unique factorization
 - Discuss principal ideal domains

. Academic Integrity: All KFUPM ethic policies apply in this course.

- . University Policy on Attendance: A DN grade will be awarded to any student who accumulates 9 absences.
- . Office Hours: Office hours: UT 9:00 a.m. 10:30 a.m. and via Email & MS Teams
- . Instructor: Salah-Eddine Kabbaj, Office: 5-428, Email: <u>kabbaj@kfupm.edu.sa</u>
- . TA: Yousef Odeh, Email: g202416340@kfupm.edu.sa