Final Exam Math 325 (Term 222, 2023) **KFUPM**

by Dr. Maher Boudabra May 21, 2023

Full name:

Your ID:

- All scalar products are meant to be canonical unless otherwise mentioned. If needed, you may use the notations $\langle \cdot, \cdot \rangle$ for the scalar product and $\|\cdot\|$ for its underlying norm.
- Recall that a sequence $(x_n)_n$ in $(V, < \cdot, \cdot >)$ converges to x means simply $||x_n x|| \xrightarrow[n \to +\infty]{} 0$. That is, feel free to use all standard limit theorems.

Exercise 1. Consider the real matrix

$$A = \begin{bmatrix} 0 & 1 \\ -a & 1+a \end{bmatrix}.$$

- 1. Compute the characteristic polynomial of A.
- 2. What is the spectrum of A?
- 3. Deduce that A is diagonalizable if and only if $a \neq 1$.
- 4. Find the eigenvectors of A.
- 5. Find the diagonal representation matrix of A together with the transition matrices.
- 6. Let (u_n) be the sequence defined recursively by

$$u_{n+2} = (1+a)u_{n+1} - au_n$$

with $u_0 = 0, u_1 = 1$ and let X_n be the vector $\begin{vmatrix} u_n \\ u_{n+1} \end{vmatrix}$.

- (a) Show that $X_{n+1} = AX_n$.
- (b) Express X_n in terms of A, X_0 and n.
- (c) We suppose that $a \in (-1, 1)$. Find the limit of the sequence (u_n) .

Exercise 2. Consider the following real matrix

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

- 1. Show that A is orthogonal.
- 2. Compute the characteristic polynomial of A.
- 3. Conclude that A acts as a rotation space.
- 4. Find a unit vector v such that Av = v.
- 5. Find $\cos(\theta)$ where θ is the angle of A.
- 6. Find θ . You can use without proof that $\sin(\theta) \det(v, x, f(x)) \ge 0$ for any vector non collinear to v.

Exercise 3. Let u be an isometry of a Euclidean vector space V and set v = u - id.

- 1. Recall the definition of an isometry.
- 2. Show that the u^n is also an isometry for n = 0, 1, 2, ...
- 3. Show that ker $v = \text{Im}v^{\perp}$.
- 4. Deduce that ker $v^{\perp} = \text{Im}v$.
- 5. For every integer n define the linear map u_n by

$$u_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k.$$

- (a) Let $x \in \ker v$. Show that $u_n(x) = x$.
- (b) Let $x \in \ker v^{\perp}$. Show that $u_n(x) = \frac{1}{n}(u^n(z) z)$ for some vector $z \in V$.
- 6. Show that $u_n(x) \xrightarrow[n \to +\infty]{} 0$ for $x \in \ker v^{\perp}$.
- 7. Identify the limit of $u_n(x)$ for any vector $x \in V$. Remember that $V = \ker v \oplus \ker v^{\perp}$.

Exercise 4. Let v be a diagonalizable endomorphism of K^n whose characteristic polynomial is

$$P_v(x) = \prod_{i=1}^r (x - \lambda_i)^{n_i}$$

with the n_i 's are positive. We define the commutant of v by

$$C(v) = \{ u \in \mathcal{L}(K^n) \mid uv = vu \}$$

and we set $V_i := \ker(v - \lambda_i i d), v_i := v_{|V_i}$. Recall that

$$K^n = V_1 \oplus V_2 \oplus \cdots \oplus V_r$$

- 1. What is C(id)?
- 2. Find dim C(id).
- 3. Show that $K[v] \subset C(v)$ where $K[v] := \{f(v) \mid f \in K[x]\}$.
- 4. What is the minimal polynomial of v.
- 5. Find dim V_i .
- 6. What is $v_i(x)$ for $x \in V_i$?
- 7. Let u be an element of C(v). Show that V_i is u-stable.
- 8. Let u be an endomorphism of K^n . Show that if all the V_i 's are u-stable then u belongs to C(v).
- 9. Conclude that

$$egin{aligned} \Phi &: C(v) \longrightarrow \mathcal{L}(V_1) imes \mathcal{L}(V_2) imes \cdots imes \mathcal{L}(V_r) \ & u \longmapsto (u_{|V_1}, u_{|V_2}, ..., u_{|V_r}) \end{aligned}$$

is an isomorphism.

- 10. Show that dim $C(v) = n_1^2 + n_2^2 + \dots + n_r^2$.
- 11. Show that dim $C(v) \ge n$.
- 12. Find dim C(v) where v is represented by the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$$