King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 333 Major Exam 2 The First Semester of 2021-2022 (211)				
	The Flist Semest	er of 2021-202	<u>Time Allowed</u> :	120 Minutes
Name:		ID#:		
Instructor:		_ Sec #:	Serial #:	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		10
2		12
3		10
4		12
5		13
6		10
7		8
Total		75

Q:1 (5+5 points) Find the Laplace transform of the following:

(a)
$$f(t) = t e^{3t} \sin^2 t$$

(b)
$$f(t) = e^{t-2} \sin(2t-4) \mathcal{U}(t-2)$$

 $\mathbf{Q:2}$ (12 points) Solve the initial value problem using Laplace transform

$$y'' + 3y' + 2y = f(t)$$
 with $y(0) = 0$, $y'(0) = 0$, where $f(t) = \begin{cases} 1 & 0 \le t < 3 \\ -1 & t \ge 3 \end{cases}$.

Q:3 (10 points) Find y(t) by solving the integral equation using the Laplace transform

$$y'(t) + 9 \int_{0}^{t} y(\tau) d\tau = \sin(3t), \quad y(0) = 0$$

Q:4 (10+2 points) Find the Fourier series of the function $f(x) = \begin{cases} 2+x & -2 < x < 0 \\ 2 & 0 \le x < 2 \end{cases}$. Use the Fourier series to show that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

.

Q:5 (10+3 points) (a) Find eigenvalues and eigenfunctions of the boundary value problem

$$x^{2}y'' + xy' + \lambda y = 0, \quad y(1) = 0, \quad y(e) = 0.$$

(b) Put the differential equation in self-adjoint form and write orthogonality relation.

.

Q:6 (10 points) Expand f(x) = 1, 0 < x < 3 into Fourier Bessel series using the Bessel functions of order ZERO under the boundary condition $J_0(3\alpha) + \alpha J'_0(3\alpha) = 0$.

Q:7 (8 points) Expand $f(x) = x^2$, -1 < x < 1 into Fourier Legendre series. Find only first TWO non-zero terms of the series.