King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 333 Major Exam II The First Semester of 2022-2023 (221)

Date: November 17, 2022

Time Allowed: 120 Minutes

Name:	ID#:
Section/Instructor:	Serial #:
Section/Instructor:	Serial #:

- Mobiles, calculators and smart devices are not allowed in this exam.
- Write neatly and legibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		14
2		12
3		18
4		14
5		10
6		16
7		16
Total		100

Q:1 (6+4+4 points) find the Laplace transform of the following:

•

(a)
$$f(x) = \begin{cases} -1 & t < 1 \\ 1 & t \ge 1 \end{cases}$$

(b) $f(t) = \sin(2t)\cos(2t)$
(c) $f(t) = \cos(4t+5)$

 $\mathbf{Q:2}$ (12 points) Solve the initial value problem using Laplace transform

$$y'' + 5y' + 4y = 0, \quad y(0) = 1, \quad y'(0) = 0$$

(a)
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+2s+5}\right\}$$

(b) $\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^2+9}\right\}$
(c) $\mathcal{L}\left\{t\int_{0}^{t}\sin(\tau) d\tau\right\}$

 ${\bf Q:4}$ (14 points) Use Laplace transform to solve the integral equation

$$f(t) + 2\int_{0}^{t} f(\tau)\cos(t-\tau) \, d\tau = 4e^{-t} + \sin(t)$$

Q:5 (10 points) Let $f_1(x) = x$, $f_2(x) = x^2$ and $f_3(x) = x + ax^2 + bx^3$ be orthogonal function on the interval [-2, 2]. Find the constants a and b. **Q:6** (12+4 points) (a) Find the Fourier series of the function $f(x) = \begin{cases} 2+x & -2 < x < 0 \\ 2 & 0 \le x < 2 \end{cases}$.

(b) Fourier series of
$$f(x) = \begin{cases} 0 & -\pi < x < 0\\ \sin(x) & 0 \le x < \pi \end{cases}$$
 is given as

$$f(x) = \frac{1}{\pi} + \frac{1}{2}\sin(x) + \sum_{n=2}^{\infty} \frac{1 + (-1)^n}{\pi(1 - n^2)}\cos(nx)$$

Use this Fourier series to show that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \frac{1}{7 \cdot 9} \cdots$

•

Q:7 (a) (12+4 points) Find the eigenvalues and eigenfunctions of the boundary value problem

$$x^2y'' + xy' + \lambda y = 0, \quad y(1) = 0, \quad y(5) = 0.$$

(b) Put the differential equation in self–adjoint form and give an orthogonality relation.

.