King Fahd University of Petroleum and Minerals Department of Mathematics Syllabus of Math 333-Term 221 <u>Coordinator</u>: Dr. Muhammad Yousuf

Course:MATH 333Title:Methods of Applied Mathematics ITextbook:Advanced Engineering Mathematics by Zill and Wright (Fifth Edition)

Course Objectives: The objective of the course is to introduce students to calculus of vector functions, Laplace and Fourier transforms, Fourier series and partial differential equations.

Catalog Description: Special functions. Bessel's functions and Legendre polynomials. Vector analysis including vector fields, divergence, curl, line and surface integrals, Green's, Gauss' and Stokes' theorems. Sturm -Liouville theory. Laplace transforms. Fourier series and transforms. Introduction to partial differential equations and boundary value problems in rectangular, cylindrical and spherical coordinates.

Prerequisites: MATH 201, MATH 202, or MATH 208

Learning Outcomes: Upon completion of this course, students will be able to:

- 1. Calculate the line integral along plane or space curves and the surface integral over surfaces in 3D-space.
- 2. Compute different types of integrals using Green's, Stokes' and Divergence theorems
- 3. Evaluate Laplace transform, inverse Laplace transform, and Fourier integral of a given function.
- 4. Find Fourier series, Fourier cosine/sine series, Bessel and Legendre series of a given function.
- 5. Evaluate the eigenvalues and eigenfunctions for a given Sturm-Liouville boundary-value problem.
- 6. Solve boundary-value problems for wave, heat, and Laplace equations in various coordinate systems by variable separable method.
- 7. Use Laplace, inverse Laplace, Fourier, and inverse Fourier transforms to solve linear initial and boundary-value problems.

Week	Date	Sec.	Topics	Suggested Important Problems			
1	Aug 28-Sep 01	9.1	Vector Functions	9, 10, 13, 15, 18, 23, 31, 36, 40, 43			
		9.5	Directional Derivative	6, 10, 13, 18, 22, 25, 31, 32, 33, 35			
2	Sep 04-08	9.7	Curl and Divergence	2, 5, 10, 15, 19, 23, 27, 28			
		9.8	Line Integrals	2, 5, 10, 11, 15, 19, 22, 29, 30, 34			
3	Sep 11-15	9.9	Independence of the Path	5, 13, 18, 21, 23, 25			
		9.12	Green's Theorem	2, 4, 6, 10, 12, 23, 25			
4	Sep 18-21	9.13	Surface Integrals 2, 5, 6, 7, 10, 18, 22, 25, 30, 33				
National Day Holiday Sep 22							
5	Sep 25-29	9.14	Stokes' Theorem	1, 3, 5, 6, 8, 13, 15, 17			
		9.16	Divergence Theorem	2, 4, 7, 9, 11, 12, 14			
6	Oct 02-06	4.1	Definition of the Laplace transform	1, 5, 8, 14, 25, 30, 35, 37, 39			
		4.2	The Inverse Transform and Transforms of	4,10, 16, 19, 22, 24, 33, 35, 39			
			Derivatives				
7	Oct 09-13	4.3	Translation Theorems	6, 14, 20, 24, 32, 48, 55, 63, 67, 70			
		4.4	Additional Operational Properties	1,7, 10, 14, 22, 25, 29, 33, 40, 46			
8	Oct 16-20	4.5	The Dirac Delta Function	1, 5, 8, 11, 12			

Weekly Distribution of the Material

		12.1	Orthogonal Functions	3, 5, 12, 13, 18
9	Oct 23-27	12.2 12.3	Fourier Series Fourier Cosine and Sine Series	2, 6, 14, 17, 20 5, 8, 12, 16, 25, 28, 33, 35, 38
10	Oct 30-Nov03	12.5 12.6	Sturm-Liouville Theorem Bessel and Legendre Series	1, 2, 4, 6, 7, 8, 9 4, 6, 7, 8, 9, 10, 15, 17, 19, 20
11	Nov 06-10	12.6 13.1	Bessel and Legendre Series (Continue) Separable Partial Differential Equations	2,4,6,8,15,20 2, 8, 12, 16, 23, 26, 28
12	Nov 13-17	13.3 13.4	Heat Equation Wave Equation	2, 3, 6, 7 1, 2, 4, 5, 6, 9
13	Nov 20-24	13.5 14.2	Laplace's Equation Problems in Cylindrical Coordinates	2, 4, 7, 10, 12, 16 1, 2, 3, 4, 9
	Nov 27-Dec 01		Midterm break	
14	Dec 04-08	14.3 15.2	Problems in Spherical Coordinates Applications of the Laplace Transform	1, 3, 4, 5, 6 1, 2, 3, 4, 6, 10
15	Dec 11-15	15.3 15.4	Fourier Integrals Fourier Transforms	1, 4, 8, 10, 12 1, 3, 4, 5, 6, 10, 12, 16
16	Dec 18	Normal Thursday classes - Last Day of classes for the term		

Assessment Policy:

Assessment	Percentage	Date	Material
Midterm 1	25% (100 points)	October 05, 2022	Chapter 9
Midterm 2	25% (100 points)	November 17, 2022	Chapter 4, 12
Final	35% (140 points)	To be announced later	Comprehensive
Classwork	10% (40 points)	Instructor choice	Will be announced in the class
Online Homework	5% (20 points)	Every week	

Classwork Interval: The classwork score should be in the interval [70%, 75%].

Letter Grades: The letter grades are based on curved grading (a grading curve), which will depend on the average of all students taking the course.

Entering Exam Hall: Student is not allowed to enter the exam hall without either KFUPM ID or Saudi ID or Iqama. Students must take the exam in the place assigned to them.

Mobile: Carrying mobile phones, smart watches or electronic devices to <u>the exam halls is not allowed</u>. **DN Grade:** Students need to strictly adhere to the attendance policy of the university. A DN grade will be awarded to any student who accumulates more than 20% (9/45) unexcused absences or more than 33% (15/45) excused and unexcused absences of lectures and labs. DN-Grade will be assigned to the eligible students after their instructors have <u>warned them twice through email</u>.

Missing an Exam: In case a student misses an exam (Exam I, Exam II, or the Final Exam) for a legitimate reason (such as medical emergencies), he/she must bring an official excuse from Students Affairs. Otherwise, he/she will get zero in the missed exam.

Misconduct in Exams: The University takes any instances of academic misconduct very seriously. A student who cheats or attempts to cheat will be reported to the university administration for the appropriate course of action.