King Fahd University of Petroleum & Minerals
Department of Mathematics & Statistics
Math 333 Major Exam I
The Summer Semester of 2022-2023 (223)Date: July 13, 2023 at 7:00 pmTime Allowed: 120 Minutes

- Mobiles, calculators and smart devices are not allowed in this exam.
- Write neatly and legibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		12
2		12
3		10
4		12
5		14
6		12
7		14
8		14
Total		100

Q:1 (6+6 points) (a) Find parametric equations of the tangent line to the graph of the curve given by the parametric equations,

$$x = t, \ y = \frac{t^2}{2}, \ z = \frac{t^3}{3}$$

at the point t = 2.

(b) Find length of the curve $\vec{r}(t) = 4\cos t \ \hat{i} + 4\sin t \ \hat{j} + 5t \ \hat{k}, \quad 0 \le t \le 2\pi.$

Q:2 (12 points) Find the directional derivative of $f(x, y) = \frac{xy}{x+y}$ at the point (2, -1) in the direction of $\vec{u} = 6 \ \hat{i} + 8 \ \hat{j}$. Also find direction of maximum rate of change and value of maximum directional derivative.

 ${\bf Q:3}$ (10 points) Find curl and divergence of the vector field

$$\vec{F}(x,y,z) = 3yz \ln x \ \hat{i} + (3x + 2yz) \ \hat{j} + 2xy^2 z^3 \hat{k}$$

Q:4 (12 points) Evaluate the line integral $\oint_C (x^2 + y^2) dx - 3xy dy$, where *C* is the upper half closed circle given by the $y = \sqrt{9 - x^2}$ and the line x = t, y = 0, $-3 \le t \le 3$.

- **Q:5** (7+7 points) (a) Show that the vector field $\vec{F}(x, y) = (x^3 + y)\hat{i} + (x + y^3)\hat{j}$ is conservative and find a potential function $\Phi(x, y)$ such that $\nabla \Phi = \vec{F}$.
- (b) Use $\Phi(x, y)$ to evaluate the integral $\int_C (x^3 + y) dx + (x + y^3) dy$, curve C from (1, 2) to (2, 3).

Q:6 (12 points) Use Green's theorem to evaluate $\oint_C -2y^2 dx + 4xy dy$, where C is the boundary of the region in the first quadrant bounded by y = 0, $y = \sqrt{x}$ and y = -x + 2

Q:7 (14 points) Use **Stokes' theorem** to evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, ds$, where

 $\vec{F}(x,y,z) = 6yz\,\hat{i} + 5x\,\hat{j} + yze^{x^2}\,\hat{k}$ and S is the portion of the paraboloid $z = \frac{1}{4}x^2 + y^2$ for $0 \le z \le 4$.

Q:8 (14 points) Use Divergence theorem to evaluate the flux $\iint_{S} (\vec{F}. \hat{n}) ds$, where

$$\vec{F}(x, y, z) = y^3 \hat{i} + x^3 \hat{j} + z^3 \hat{k}$$

and D is the region bounded by $z = \sqrt{4 - x^2 - y^2}$, $x^2 + y^2 = 3$, z = 0.