	King Fahd University Department of Mar Math 333 The Third Semest	of Petroleum thematics & \$ Final Exam er of 2022-20	& Minerals Statistics 1 23 (223)	
			Time Allowed:	150 Minutes
Name:	ID#:			
Instructor:		Sec #:	Serial #:	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		17
2		25
3		17
4		22
5		22
6		22
7		15
Total		140

Q:1 (10+7 points) (a) Find curl and divergence of the vector field

$$\vec{F}(x,y,z) = (x-y)^3 \hat{i} + 3e^{-xy} \hat{j} + 3xye^{2yz} \hat{k}$$

(b) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is a constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\nabla \times [(\vec{r} \cdot \vec{r})\vec{a}] = 2(\vec{r} \times \vec{a})$

Q:2 (25 points) Find the temperature u(x,t) in a rod of length π if the end points are insulated and initial temperature is u(x,0) = f(x), where $f(x) = \begin{cases} 1 & 0 < x < \pi/2 \\ 0 & \pi/2 < x < \pi \end{cases}$.

.

Q:3 (17 points) Consider the Wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \quad 0 < x < 1, \ t > 0,$$

subject to the conditions

$$u(0,t) = 0, u(1,t) = 0, t > 0,$$

 $u(x,0) = \sin(2\pi x), 0 < x < 1.$

If $X_n(x) = B_n \sin(n\pi x)$ are the nontrivial solutions obtained by using separation of variables

with u(x,t) = X(x)T(t), find the general solution of the problem.

Q:4 (22 points) Find the steady sate temperature u(r, z) in a circular cylinder of radius 2 and length 4 by solving the following initial-boundary value problem,

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \quad 0 < r < 2, \quad 0 < z < 4,$$

with boundary conditions u(2, z) = 0, 0 < z < 4 and u(r, 0) = 0, u(r, 4) = 5, 0 < r < 2.

.

Q:5 (22 points) Use separation of variables method to find the steady-state temperature $u(r, \theta)$

in a sphere of radius 3 by solving the problem

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0, \quad 0 < r < 3, \ 0 < \theta < \pi,$$

subject to the boundary condition $u(3,\theta) = 1 - \cos(\theta), \quad 0 < \theta < \pi.$

Hint: $P_0(\cos \theta) = 1$ and $P_1(\cos \theta) = \cos \theta$.

.

Q:6 (22 points) Use the Laplace transform to solve the problem

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \ x>0, \ t>0$$

subject to the conditions

$$u(x,0) = 0, \quad u_t(x,0) = 0 \ x > 0.$$

$$u(0,t) = f(t), \quad \lim_{x \to \infty} u(x,t) = 0, \ t > 0,$$
 where $f(t) = \begin{cases} \cos \pi t, & 0 \le t \le 1\\ 0, & t > 1 \end{cases}$.

Q:7 (5+5+5 points) Apply the appropriate Fourier transform to convert the given partial differential equation into an ordinary differential equation.

Do not solve the ordinary differential equation.

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \ 0 < x < \infty, \ t > 0$$

with $u(x, 0) = e^{-|x|}$, $0 < x < \infty$ and $u_x(0, t) = 0$.

(b) Fourier — with respect to — $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < \pi, \ y > 0$

with u(0, y) = 1, $u_x(\pi, y) = 5$, y > 0 and u(x, 0) = 0, $0 < x < \pi$.

(c) Fourier ——————————with respect to ————

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \ -\infty < x < \infty, \ t > 0$$

with $u(x, 0) = e^{-|x|}, -\infty < x < \infty$.

•