King Fahd University of Petroleum and Minerals Department of Mathematics Math 333 Exam I - Term 223 October 04, 2023

Time allowed: 110 minutes

Name:

ID #:

Check that this exam has 8 questions

- 1. Write legibly.
- 2. Write your name, and ID number on space provided on the FRONT sheet.
- 3. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.

CODE 1

Distribution of Marks

Question Number	Points	POINTS SCORED
1	10	
2	10	
3	15	
4	10	
5	15	
6	15	
7	10	
8	15	
TOTAL POINTS	100	

Q1. (*10 points*) Find parametric equations of the tangent line to the graph of the curve C whose equations are $x = t^3$, y = t + 1, z = 6t at **t=2**.

Q2. (10 points) Consider a scalar function $f(x, y) = x^2 + y^2 + xy$. Find all points where the directional derivative $D_{\vec{u}}f(x, y)$ is zero with

 $\vec{u}=\vec{\iota}+\vec{j}.$

Q3. (15 points) Compute the line integral

$$\oint (x^2 + y^2) dx - (x + y) dy$$

along the closed curve given below:

Q4. (*10 points*) Evaluate work done by a force $\widehat{F}(x, y) = x \hat{i} - y \hat{j}$ along the curve defined by $\widehat{r} = sint \hat{i} + cost \hat{j}$ with $0 \le t \le \pi/2$.

Q5. (15 points)

(a): Show that $\int_{C}^{\cdot} \vec{F} \circ d\vec{r}$, where $\vec{F} = x^2 y \vec{\iota} + \frac{1}{3} x^3 \vec{j}$ is independent of path between (-1, 0) to (1, 3).

(b): Find potential function $\emptyset(x, y)$ for the force \vec{F} .

(c): Evaluate $\int_{(-1,0)}^{(1,3)} \vec{F} \circ d\vec{r}$.

Q6. (15 points) Verify Green's theorem by evaluating both sides of

$$\oint_C^{\cdot} -y \, dx + x \, dy = \iint_R^{\cdot} 2 \, dA,$$

where "**C**" is the boundary of the region in the first quadrant determined by the graphs of

$$y=\mathbf{0}, \ y=\sqrt{x}$$
, and $y=-x+2$.

Q7. (*10 points*) Find the surface area of that portion of plan

x + y + z = 1 that is bounded by the co-ordinate planes in the **first** octant.

Q8. (15 points) Given that $\vec{F} = 5 \ y \ \vec{i} - 5 \ x \ \vec{j} + 3 \ \vec{k}$, with "S" that portion of the surface z = 1 within the cylinder $x^2 + y^2 = 4$.

Use stokes theorem to find

$$\oint \vec{F} \circ d\vec{r} = \oint \vec{F} \circ \vec{T} \, ds = \iint_{S} curl \vec{F} \circ \vec{n} \, ds.$$

Assume that the surface is oriented upwards. (ONLY COMPUTE RIGHT HAND SIDE OF TH INTEGRAL)