King Fahd University of Petroleum & Minerals Department of Mathematics

Math 333: Methods of Applied Mathematics I First Major Exam, Semester 241

Section 01, Instructor: Dr. Rajai S. Alassar

October 6, 2024 at 6:30 pm

Time Allowed: 90 minutes

Name: _____ I.D. # _____

Question No.	Maximum Marks	Marks
1	4	
2	3	
3	5	
4	4	
5	4	
6	5	
Total	25	

- Consider the space curve r
 r(t) = cos t i + sin t j + t k.

 a) Find parametric equations of the tangent line to the curve at t = π.
 b) Find the length of the curve on the interval 0 ≤ t ≤ 2π.

2. Evaluate $\int_C (x^3 + 2x y^2 + 2x) ds$, where C is the curve given parametrically by x = 2t, $y = t^2$, $0 \le t \le 1$.

3. Show that the field $\vec{F}(x, y, z) = 2 x z i + 2 y z j + (x^2 + y^2) k$ is conservative. Find a potential function φ for \vec{F} and use it to evaluate $\int_{(0,0,0)}^{(1,1,1)} \vec{F} \cdot d\vec{r}$.

4. Use Green's theorem to evaluate $\oint_C x y^2 dx + 3 \cos y dy$, where *C* is the positively-oriented boundary of the region in the first quadrant determined by the graphs of $y = x^2$ and $y = x^3$.

5. Use Stokes' theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y, z) = (x + 2z)i + (3x + y)j + (2y - z)k$ and *C* is the curve of intersection of the plane x + 2y + z = 4 with the coordinates planes. Assume *C* is oriented counterclockwise as viewed from above.

6. Let *D* be the region bounded by the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2. Use the Divergence theorem to find the outward flux $\iint_S (\vec{F} \cdot \vec{n}) dS$ of the vector field $\vec{F}(x, y, z) = 3y^2 z i - x z j + z^2 k$.