King Fahd University of Petroleum and Mineral College of Computing and Mathematics Department of Mathematics

MATH341 – Advanced Calculus I

Academic Year 2022-23

Term 221

Major Exam 1

• *The answers must be fully supported by logical arguments to get full credit*

Time allowed: **100** Minutes

Exercise 1

Fill in the blank with the most appropriate term/expression.

- (a) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then $\alpha \le \infty$
- (b) **The completeness property of** ℝ. Every nonempty set of real numbers that has an upper bound also has a Supremum in ℝ.
- (c) **The Density Theorem.** If x and y are any real numbers with $x \leq y$, then there exists a $|\text{rational number}|\text{r}$ such that \times \times \times \times </u>
- (d) **Archimedean Property**. If $x \in \mathbb{R}$, then there exists $\mathbf{h} \in \mathbb{N}$ such that $\mathbf{x} \leq \mathbf{h}$
- (e) **Monotone Convergence Theorem.** A **monotone** sequence of real numbers is convergent if and only if it is **bounded** Fig. 1f (x_n) is a bounded decreasing sequence, then

$$
\lim(x_n) = \inf \{ x_n : n \in \mathbb{N} \}
$$

(f) A sequence (x_n) of real numbers is said to be a **Cauchy sequence** if for every $\varepsilon > 0$ there exists $\frac{H(\epsilon) \in N}{\epsilon}$ such that for all $m, n \geq R(\epsilon)$ we have

 $|x_n - x_m| < \epsilon$, $m, n \in \mathbb{N}$

(g) **Monotone Subsequence Theorem**. If (x_n) is a sequence of real numbers, then there is a subsequence of (x_n) that is monotone

Exercise 2

- (a) If $c > 1$, show that $c^n \ge c$ for all $n \in \mathbb{N}$, and that $c^n > c$ for $n > 1$.
- (b) Find all $x \in \mathbb{R}$ that satisfy $|2x 4| + |x + 2| < 7$

(a) proof. If c>1, then we can write c=1+a, a>0.
We have
$$
c^n = (1+a)^n \ge 1+na \ge 1+a = c
$$
 If $n \ge 1$

$$
\text{and } c^{h} = (1+a)^{n} \ge 1+n a > 1+a = c \qquad |f n > 1
$$

 \sim \sim

(b) If
$$
x \ge 2
$$
, then we have
\n
$$
2x - 4 + x + 2 < 7
$$
\n
$$
\Rightarrow 3x < 9 \Rightarrow x < 3
$$

Hence, $2 \le x < 3$

If
$$
-2 \le x < 2
$$
, then we have
\n $-2x+4 + x+2 < 7$
\n $\Rightarrow -x < 1 \Rightarrow x > -1$
\nThus, $-1 < x < 2$

If $x < -2$, then we have $-2x + 4 - x - 2 < 7$ $\Rightarrow -3x < 5 \Rightarrow x > -\frac{5}{3}$
{x < -2 } U {x > - 5 } } = ϕ We obtain the solution: $-1< x < 3$

Exercise 3 Let S be a nonempty bounded set in ℝ.

(a) Let
$$
a > 0
$$
 and $as = \{as: s \in S\}$. Show that
\n $inf(as) = a infs$ and $sup(as) = a sups$
\n(b) Let $b < 0$ and $bs = \{bs: s \in S\}$. Show that
\n $inf(bS) = b sups$ and $sup(bS) = b infs$
\n**Proof.**
\n(a) Let $u = inf(s)$, we have $s > u$ $\forall s \in S$.
\nIf $a > 0$, then $a s \ge a u$ $\forall s \in S$.
\nHence, au is a lower bound of a s. Let $v be$
\na lower bound of aS . It has $v \le as \forall s \in S$.
\nSince $a > 0$, $\frac{v}{a} \le s$ $\forall s \in S$. Thus, $\frac{v}{a}$ is a
\nlower bound of $s \in S$. We have $\frac{v}{a} \ge inf(s) = u$.
\nTherefore, $v \ge au$. so, $inf(aS) = au = a inf(S)$
\nSimilarly, we can show that $sup(aS) = a sup(s)$.
\n(b) If $w = sup(s)$, $s \le w$ $\forall s \in S$. If $b < 0$,
\nwe have $b s \ge b w$ $\forall s \in S$. So, bu is
\na lower bound of us . Let $v be a lower bound$
\nof us . Thus, $v \le bs \le s \le s$, since $b < 0$,
\n $\frac{v}{b} \ge s$ $\forall s \in S$. We have that $\frac{v}{b}$ is an upper
\nbound of S . Hence, $\frac{v}{b} \ge sup(s) = w$. Since $b < 0$,
\n $v \le bu$.
\nThere, $inf(bS) = bu = b sup(s)$

If
$$
u = lnf(S)
$$
, $s \ge u$ $\forall s \in S$. If $b < c$,
\nwe have $bs \le bu$ $\forall s \in S$. so, bu is
\nan upper bound of bs . Let z be an upper bound
\nof bs . Thus, $2 \ge bs$ $\forall s \in S$. Since $b < c$,
\n $\frac{2}{b} \le s$ $\forall s \in S$. We have that $\frac{2}{b}$ is a lower
\nbound of S. Hence, $\frac{2}{b} \le int(S) = u$. Since bc ,
\n $2 \ge bu$.
\nTherefore, $sup(bS) = bu = binf(S)$

Exercise 4 Let $x_1 \ge 3$ and $x_{n+1} = 2 + \sqrt{x_n - 2}$ for $n \in \mathbb{N}$.

- (a) Prove that (x_n) is monotone
- (b) Show that (x_n) is bounded

(c) Is the sequence convergent? and why? If yes, find its limit.

(a)
$$
prob
$$
. By induction we show that $x_{n+1} \le x_n$, $\forall n \in N$
\n $sinCx - x_1 \ge 3$, $x_1 - 2 \ge 1$. We have
\n $x_1 - 2 \ge \sqrt{x_1 - 2} \implies x_1 \ge 2 + \sqrt{x_1 - 2} = x_2$
\nSo, it is true for $n = 1$. Assume that it is true
\nfor $n = k$: $X_{k+1} \le x_k$. We obtain
\n $X_{k+2} = 2 + \sqrt{x_{k+1} - 2} \implies 2 + \sqrt{x_{k-2}} = X_{k+1}$
\nSo, it is true for $n = k+1$. Hence, the sequence
\nif $decreasing (monotone)$
\n(b) $x_1 \ge 3$. Assume that $X_k \ge 3$. We will show
\nthat $X_{k+1} \ge 3 \cdot x_{k+1} = 2 + \sqrt{x_{k-2}} \ge 2 + \sqrt{3-2} = 3$.
\nso, $x_1 \ge 3$ $X_{k+1} = 2 + \sqrt{x_{k-2}} \ge 2 + \sqrt{3-2} = 3$.
\nSo, $x_1 \ge 3$ $X_{k+1} = 2 + \sqrt{x_{k-2}} \ge 2 + \sqrt{3-2} = 3$.
\nSince (x_n) is bounded, we have $3 \le x_n \le x_1$
\nfor all $n \in \mathbb{N}$. Hence, (x_n) is bounded.
\n(c) The sequence is decreasing and bounded.
\nthe sequence is Convergent. let $x = \lim (x_n)$
\n $\lim (x_{n+1}) = 2 + \sqrt{\lim (x_n) - 2} \implies x = 2 + \sqrt{x-2}$
\n $(x - 2)^2 = x - 2 \implies x - 2 = 0$ or $x - 2 = 1$
\nSince $x_n \ge 3$ $\forall n \in \mathbb{N}$, $\lim (x_n) = 3$.

Exercise 5

- a) Show directly from the definition that a bounded, monotone decreasing sequence is a Cauchy sequence.
- b) If $x_n := \sqrt{2n}$, show that (x_n) satisfies $\lim |x_{n+1} x_n| = 0$, but that is not a Cauchy sequence.

Proof.

\na) Let
$$
(x_n)
$$
 be a bounded and monotone decreasing sequence. $\exists M \in \mathbb{R}$ such that $|x_n| \le M$ then.

\n $x_n \ge -M$ If $n \in \mathbb{N}$. The set $\{x_n : n \in \mathbb{N}\}$ has an infimum. Let $x = \inf \{x_n : n \in \mathbb{N}\}$.

\nIf $f(x) = 0$, let $H \in \mathbb{N}$ be such that

\n $x \le x_n < x + \epsilon$.

\nIf $m \ge n \ge H$, then $x \le x_m \le x_n \le x_1 < x + \epsilon$.

\nHence, $|x_n - x_m| < \epsilon$, $\forall m, n \ge H$, that is, (x_n) is a Cauchy sequence.

\nb) Note that $|x_{n+1} - x_n| = \sqrt{2(n+1)} - \sqrt{2n}$

\n $= \frac{2(n+1) - 2n}{\sqrt{2(n+1)} + \sqrt{2n}}$

\n $= \frac{2}{\sqrt{2(n+1)} + \sqrt{2n}} \le \frac{2}{\sqrt{n}}$

\nLet $f(x) = 0$. Note that $\frac{2}{\sqrt{n}} < \epsilon$ if $n > \frac{4}{\epsilon^n}$.

\nChoose $K > \frac{4}{\epsilon^2}$, we have $|x_{n+1} - x_n| < \epsilon$, $\forall n \ge 0$.

\nSo $\lim |x_{n+1} - x_n| = 0$.

To Show that (x_n) is Not cauchy, take $m=4n$. We have $|\mathbf{x}_h - \mathbf{x}_m| = |\mathbf{x}_{hn} - \mathbf{x}_n|$ $= \sqrt{8n} - \sqrt{2n}$ $2\sqrt{2n} - \sqrt{2n}$ $=\sqrt{2n}>\sqrt{n}$, $\forall n\in\mathbb{N}$ If we take $\epsilon = 1$, \forall k $\in \mathbb{N}$, \exists n, m Such that $|x_n-x_m| > \sqrt{n} > 1 = \epsilon$. Hence, (xn) is not a Canch seguence.