King Fahd University of Petroleum and Mineral College of Computing and Mathematics Department of Mathematics

MATH341 – Advanced Calculus I

Academic Year 2022-23

Term 221

Major Exam 1

Name:	Solution
ID#:	

• The answers must be fully supported by logical arguments to get full credit

Question	Score	Max Score
1		17
2		20
3		24
4		22
5		17
Total		100

Time allowed: 100 Minutes

Exercise 1

Fill in the blank with the most appropriate term/expression.

- (a) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then _____ $a \ge o$
- (b) The completeness property of \mathbb{R} . Every nonempty set of real numbers that has an upper bound also has <u>a Supremum</u> in \mathbb{R} .
- (c) The Density Theorem. If x and y are any real numbers with x < y, then there exists a <u>rational number</u> such that x < r < y
- (d) Archimedean Property. If $x \in \mathbb{R}$, then there exists <u>h \in N</u> such that $x \leq n$
- (e) Monotone Convergence Theorem. A <u>monotone</u> sequence of real numbers is convergent if and only if it is <u>bounded</u>. If (x_n) is a bounded decreasing sequence, then

$$\lim(x_n) = \frac{\inf\{x_n : n \in \mathcal{N}\}}{\lim\{x_n : n \in \mathcal{N}\}}$$

(f) A sequence (x_n) of real numbers is said to be a **Cauchy sequence** if for every $\varepsilon > 0$ there exists $\underline{H(\varepsilon) \in \mathbb{N}}$ such that for all $\underline{\mathbb{M}, \mathbb{N} \ge \mathbb{H}(\varepsilon)}$ we have

 $|x_n - x_{mn}| < \varepsilon$, $m, n \in N$

(g) Monotone Subsequence Theorem. If (x_n) is a sequence of real numbers, then there is <u>a sub sequence of (x_n) </u> that is <u>MONDLONE</u>

Exercise 2

- (a) If c > 1, show that $c^n \ge c$ for all $n \in \mathbb{N}$, and that $c^n > c$ for n > 1.
- (b) Find all $x \in \mathbb{R}$ that satisfy |2x 4| + |x + 2| < 7

(a) proof. If
$$c > 1$$
, then we can write $c = 1 + a$, $a > 0$.
We have $c^n = (1 + a)^n \ge 1 + na \ge 1 + a = c$ If $n \ge 1$

and
$$C^{n} = (1+a)^{n} \ge 1+na > 1+a = c$$
 If $n > 1$

(b) If
$$x \ge 2$$
, then we have
 $2x - 4 + x + 2 < 7$
 $\Rightarrow 3x < 9 \Rightarrow x < 3$

Hence, $2 \le x < 3$

If
$$-2 \le x < 2$$
, then we have
 $-2x + 4 + x + 2 < 7$
 $\Rightarrow -x < 1 \Rightarrow x > -1$
Thus, $-1 < x < 2$

If x < -2, then we have -2x + 4 - x - 2 < 7 $\Rightarrow -3x < 5 \Rightarrow x > -\frac{5}{3}$ $\left\{ x < -2 \right\} \cup \left\{ x > -\frac{5}{3} \right\} = \phi$ We obtain the solution: -1 < x < 3 **Exercise 3** Let S be a nonempty bounded set in \mathbb{R} .

(a) Let
$$a > 0$$
 and $aS = \{as: s \in S\}$. Show that
 $inf(aS) = a infS$ and $sup(aS) = a sup S$
(b) Let $b < 0$ and $bS = \{bs: s \in S\}$. Show that
 $inf(bS) = b sup S$ and $sup(bS) = b infS$
Proof.
(a) Let $U = inf(S)$. We have $s \ge U + S \in S$.
If $a > 0$, then $a \le \ge a U + S \in S$.
If $a > 0$, then $a \le \ge a U + S \in S$.
Hence, $a U$ is a lower bound of aS . Let V be
a lower bound of aS . Then $V \le aS + S \in S$.
Since $a > 0$, $\frac{V}{a} \le S + S \in S$. Thus, $\frac{V}{a}$ is a
lower bound of S . We have $\frac{V}{a} \ge inf(S) = U$.
Therefore, $V \ge a U$. So, $Inf(aS) = a U = a inf(S)$.
Similarly, we can show that $sup(aS) = a Sup(S)$.
(b) If $W = Sup(S)$, $s \le W + S \in S$. If $b < 0$,
we have $b \le \ge b W + S \in S$. Since $b < 0$,
 $\frac{V}{b} \ge S + S \in S$. we have that $\frac{V}{b}$ is an upper
bound of S . Hence, $\frac{V}{b} \ge sup(S) = w$. Since $b < 0$,
 $V \le b W$.
Therefore, $inf(bS) = b w = b Sup(S)$

If
$$u = \inf(S)$$
, $s \ge u$ $\forall s \in S$. If $b < o$,
we have $bs \le bu$ $\forall s \in S$. so, bu is
an upper bound of bS . Let $\ge be$ an upper bound
of bS . Thus, $\ge \ge bS$ $\forall s \in S$. since $b < o$,
 $\frac{2}{b} \le S$ $\forall s \in S$. we have that $\frac{2}{b}$ is a lower
bound of S. Hence, $\frac{2}{b} \le \inf(S) = u$. since $b < o$,
 $2 \ge bu$.
Therefore, $sup(bS) = bu = binf(S)$

Exercise 4 Let $x_1 \ge 3$ and $x_{n+1} = 2 + \sqrt{x_n - 2}$ for $n \in \mathbb{N}$.

- (a) Prove that (x_n) is monotone
- (b) Show that (x_n) is bounded

(c) Is the sequence convergent? and why? If yes, find its limit.

(a) proof. By induction we show that
$$x_{n+1} \leq x_n$$
, then
Since $x_1 \geq 3$, $x_1 - 2 \geq 1$. We have
 $x_1 - 2 \geq \sqrt{x_1 - 2} \implies x_1 \geq 2 + \sqrt{x_1 - 2} = x_2$
So, It is true for $n = 1$. Assume that H is true
for $n = k$: $x_{k+1} \leq x_k$. We obtain
 $x_{k+2} = 2 + \sqrt{x_{k+1} + 2} \geq 2 + \sqrt{x_k} - 2 = x_{k+1}$
So, It is true for $n = k + 1$. Hence, the sequence
is decressing (Monotone)
(b) $x_1 \geq 3$. Assume that $x_k \geq 3$. We will show
that $x_{k+1} \geq 3$. $x_{k+1} = 2 + \sqrt{x_k - 2} \geq 2 + \sqrt{3 - 2} = 3$.
So, $x \geq 3$ $\forall n \in \mathbb{N}$ by induction.
Since (x_n) is bounded, we have $3 \leq x_n \leq x_1$
for all $n \in \mathbb{N}$. Hence, (x_n) is bounded.
(c) The sequence is decreasing and bounded.
the sequence is decreasing and bounded.
 $\lim_{k \to 1} (x_{n+1}) = 2 + \sqrt{\lim_{k \to 1} (x_n) - 2} \Rightarrow x = 2 + \sqrt{x-2}$
 $(x-2)^2 = x-2 \Rightarrow x-2 = 0$ or $x-2 = 1$
 $\Rightarrow x = 2$
Since $x_n \geq 3$ $\forall n \in \mathbb{N}$, $\lim_{k \to 1} (x_n) = 3$.

Exercise 5

a) Show directly from the definition that a bounded, monotone decreasing sequence is a Cauchy sequence.

,

b) If $x_n \coloneqq \sqrt{2n}$, show that (x_n) satisfies $\lim |x_{n+1} - x_n| = 0$, but that is not a Cauchy sequence.

Proof.
a) Let (xn) be a bounded and monotone decreasing sequence.
$$\exists M \in \mathbb{R}$$
 such that $|x_n| \leq M$ $\forall n \in \mathbb{N}$. The set $\{x_n : n \in \mathbb{N}\}$ has an infimum. Let $x = \inf\{\{x_n : n \in \mathbb{N}\}\}$. If $\varepsilon > 0$, Let $H \in \mathbb{N}$ be such that $x \leq x_H < x + \varepsilon$. If $m \geq n \geq H$, then $x \leq x_m \leq x_n \leq x_H < x + \varepsilon$. Hence, $|x_n - x_m| < \varepsilon$, $\forall m, n \geq H$, that is, (x_n) is a Cauchy sequence.
b) Note that $|x_{n+1} - x_n| = \sqrt{2(n+1)} - \sqrt{2n}$
 $= \frac{2}{\sqrt{2(n+1)} + \sqrt{2n}} < \frac{2}{\sqrt{n}}$
Let $\varepsilon > \frac{4}{\varepsilon^2}$, we have $|x_{n+1} - x_n| < \varepsilon$, $\forall n \gg \varepsilon$.

To show that (x_n) is Not cauchy, take m = 4n. We have $|x_n - x_m| = |x_{4n} - x_n|$ $= |\sqrt{8n} - \sqrt{2n}|$ $= 2\sqrt{2n} - \sqrt{2n}$ $= \sqrt{2n} > \sqrt{n}$, $\forall n \in N$ If we take $\Xi = 1$, $\forall k \in N$, $\exists n, m$ such that $|x_n - x_m| > \sqrt{n} > 1 = \Xi$. Hence, (x_n) is not a cauch sequence.