King Fahd University of Petroleum and Mineral College of Computing and Mathematics Department of Mathematics

MATH341 – Advanced Calculus I

Academic Year 2022-23 Term 221

Final Exam

Time allowed: 150 Minutes

Name:	
ID#:	

• The answers must be fully supported by logical arguments to get full credit

Question	Score	Max Score
1		12
2		18
3		17
4		12
5		12
6		14
7		21
8		14
Total		120

- (a) Show directly from the definition that the sequence $\left(\frac{n+1}{n}\right)$ is a Cauchy sequence. (b) Let (x_n) be a Cauchy sequence such that x_n is an integer for every $n \in \mathbb{N}$. Show that (x_n) is ultimately constant.

- (a) Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$ be continuous at a point $c \in A$. Show that for any $\varepsilon > 0$, there exists a neighborhood $V_{\delta}(c)$ of c such that if $x, y \in A \cap V_{\delta}(c)$, then $|f(x) f(y)| < \varepsilon$.
- (b) Show that $f(x) = 1/x^2$ is uniformly continuous on $A = [1, \infty)$, but that it is not uniformly continuous on $B = (0, \infty)$.

- a) Show that $f(x) = x^{1/3}$, $x \in \mathbb{R}$, is not differentiable at x = 0. b) Show that if $x \ge 0$, then

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$$

(a) Suppose that f and g are continuous on [a, b], differentiable on (a, b), that c ∈ [a, b] and that g(x) ≠ 0 for x ∈ [a, b], x ≠ c. Let α = lim f and β = lim g. If β = 0, and if lim f(x)/g(x) exists in ℝ, show that α = 0.
(b) Let f(x) = x² sin(1/x) for x ≠ 0, let f(0) = 0, and let g(x) = sin x for x ∈ ℝ. Show that lim f(x)/g(x) = 0 but that lim f'(x)/g(x) does not exist.

- (a) If $f \in \mathcal{R}[a, b]$ and $|f(x)| \le M$ for all $x \in [a, b]$, show that $\left|\int_{a}^{b} f\right| \le M(b a)$. (b) If f and g are continuous on [a, b] and if $\int_{a}^{b} f = \int_{a}^{b} g$, prove that there exists $c \in [a, b]$ such that f(c) = g(c).

(a) Show there does not exist a continuously differentiable function f on [0,2] such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for $0 \le x \le 2$. [Apply the Fundamental Theorem]

(b) If g(x) = x for $|x| \ge 1$ and g(x) = -x for |x| < 1 and if $G(x) = \frac{1}{2}|x^2 - 1|$, show that

$$\int_{-2}^{3} g(x) dx = G(3) - G(-2) = 5/2.$$

(a) Show that the series $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \cdots$ is convergent, but that the Root Test fails to apply.

(b) If (a_n) is a bounded decreasing sequence and (b_n) is a bounded increasing sequence and if $x_n = a_n + b_n$ for $n \in \mathbb{N}$, show that $\sum_{n=1}^{\infty} |x_n - x_{n+1}|$ is convergent.

- (a) Find a series expansion for $\int_0^x e^{-t^2} dt$ for $x \in \mathbb{R}$.
- (b) Show that if $\sum a_n$ is an absolutely convergent series, then the series $\sum a_n \sin nx$ is absolutely and uniformly convergent.