King Fahd University of Petroleum and Minerals Department of Mathematics MATH 341 - Advanced Calculus I Major Exam II – Semester 241

- 1. Use the ϵ - δ definition of limit to establish the following $\lim_{x \to 1} \frac{x}{1+x^2} = \frac{1}{2}$.
- 2. Let *I* be an interval in \mathbb{R} , let $f : I \to \mathbb{R}$, and let $c \in I$. Suppose there exist constants *K* and *L* such that

$$|f(x) - L| < K|x - c|$$
 for $x \in I$.

Show that $\lim_{x\to c} f(x) = L$.

1. Find
$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1+3x}}{x+2x^2}$$
 where $x > 0$.
2. Prove that $\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$ does not exist, but that $\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0$.

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous at *c* and let f(c) > 0. Show that there exists a neighborhood V(c) of *c* such that if $x \in V(c)$, then f(x) > 0.
- 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that f(r) = 0 for every rational number r. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- 3. Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ x+3 & \text{if } x \text{ is irrational} \end{cases}$$

Find all points at which *g* is continuous.

- 1. If *f* and *g* are continuous on \mathbb{R} , let $S = \{x \in \mathbb{R} : f(x) \ge g(x)\}$. If $s_n \in S$ and $\lim_{n \to \infty} s_n = s$, show that $s \in S$.
- 2. Let $h : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} satisfying $h(m/3^n) = 0$ for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Show that h(x) = 0 for all $x \in \mathbb{R}$.

1. Let I = [a, b] be an interval, and let $f : I \to \mathbb{R}$ be continuous on I, and assume that f(a) < 0 and f(b) > 0. Let

$$W = \{ x \in I : f(x) < 0 \},\$$

and let $w = \sup W$. Prove that f(w) = 0.

2. Let I = [a, b] and let $f : I \to \mathbb{R}$ be a continuous function such that f(x) > 0 for each $x \in I$. Prove that there exists a number $\alpha > 0$ such that $f(x) \ge \alpha$ for all $x \in I$.

- 1. Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $A = [1, \infty)$, but that it is not uniformly continuous on $B = (0, \infty)$.
- 2. If *f* is uniformly continuous on $A \subset \mathbb{R}$, and $|f(x)| \ge k > 0$ for all $x \in A$, show that $\frac{1}{f}$ is uniformly continuous on *A*.
- 3. Prove that if f is uniformly continuous on a bounded subset A of \mathbb{R} , then f is bounded on A.

- 1. Show that if f and g are positive increasing functions on an interval I, then their product fg is increasing on I.
- 2. Let $I \subset \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$ be increasing on *I*. Suppose that $c \in I$ is not an endpoint of *I*. Then the following statements are equivalent:
 - (a) *f* is continuous at *c*.

 - (b) $\lim_{x \to c^-} f(x) = f(c) = \lim_{x \to c^+} f.$ (c) $\sup\{f(x) : x \in I, x < c\} = f(c) = \inf\{f(x) : x \in I, x > c\}.$