King Fahd University of Petroleum and Minerals Department of Mathematics MATH 341 - Advanced Calculus I Final Exam – Semester 241

1. If r > 0 is a rational number, let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^r \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Determine those values of *f* for which f'(0) exists.

2. Use the Mean Value Theorem to prove that

$$\frac{x-1}{x} < \ln x < x-1$$
 for $x > 1$.

3. Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable in (a, b). Show that if $\lim_{x \to a} f'(x) = A$, then f'(a) exists and equals A. **Hint:** Use the definition of f'(a) and the Mean Value Theorem.

- 1. Let *I* be an interval and let $f : I \to \mathbb{R}$ be differentiable on *I*. Show that if f' is positive on *I*, then *f* is strictly increasing on *I*.
- 2. Let *I* be an interval and let $f : I \to \mathbb{R}$ be differentiable on *I*. Show that if the derivative f' is never 0 on *I*, then either f'(x) > 0 for all $x \in I$ or f'(x) < 0 for all $x \in I$.
- 3. Let *I* be an interval. Prove that if f is differentiable on *I* and if the derivative f' is bounded on *I*, then f satisfies a Lipschitz condition on *I*.

Evaluate the following limits:

(a)
$$\lim_{x \to 0^+} x^{2x}$$

(b)
$$\lim_{x \to \infty} (1 + 3/x)^x$$

(c)
$$\lim_{x \to 0} (\frac{1}{x} - \frac{1}{\arctan x})$$

1. Show that if x > 0, then

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1 + x} \le 1 + \frac{1}{2}x.$$

- 2. If $g(x) := \sin x$, show that the remainder term in Taylor's Theorem converges to 0 as $n \to \infty$ for each fixed x and x_0
- 3. Suppose that $I \subseteq \mathbb{R}$ is an open interval and that f''(x) > 0 for all $x \in I$. If $c \in I$, show that the graph of f on I is above the tangent line to the graph at (c, f(c)).

Let 0 < a < b, let $f(x) := x^2$ for $x \in [a, b]$ and let $\mathcal{P} := \{x_i\}_{i=0}^n$ be a partition of [a, b]. For each *i*, let q_i be the square root of

$$\frac{1}{3}\left(x_{i}^{2}+x_{i}x_{i-1}+x_{i-1}^{2}\right).$$

- (a) Show that q_i satisfies $0 \le x_{i-1} \le q_i \le x_i$.
- (b) Show that $f(q_i)(x_i x_{i-1}) = \frac{1}{3}(x_i^3 x_{i-1}^3)$.
- (c) If \dot{Q} is the tagged partition with the same subintervals as \mathcal{P} and the tags q_i , show that

$$S(f; \dot{\mathcal{Q}}) = \frac{1}{3}(b^3 - a^3).$$

(d) Show that $f \in \mathcal{R}[a, b]$ and

$$\int_{a}^{b} x^{2} dx = \frac{1}{3}(b^{3} - a^{3}).$$

Let $f, g \in \mathcal{R}[a, b]$.

- (a) If $t \in \mathbb{R}$, show that $\int_a^b (tf \pm g)^2 \ge 0$.
- (b) Use (a) to show that $2|\int_a^b fg| \le t \int_a^b f^2 + \left(\frac{1}{t}\right) \int_a^b g^2$ for t > 0.
- (c) If $\int_a^b f^2 = 0$, show that $\int_a^b fg = 0$.
- (d) Prove that

$$\left|\int_{a}^{b} fg\right|^{2} \leq \left(\int_{a}^{b} f^{2}\right) \left(\int_{a}^{b} g^{2}\right).$$

This inequality is called the Cauchy-Schwarz Inequality.

- 1. Show that $\lim_{n \to \infty} \frac{x}{x+n} = 0$ for all $x \ge 0$.
- 2. Show that if a > 0, then the convergence of the sequence $f_n(x) = \frac{x}{x+n}$ is uniform on the interval [0, a], but is not uniform on the interval $[0, \infty)$.