King Fahd University of Petroleum and minerals Mathematics Department Math 371 Exam I, Term(213) Time Allowed: **90** minutes June 22, 2022, 7:00 pm

Name:-----Sr.#:-----

ID:-----Section #:-----

Question #	Marks	Maximum Marks
1		8+7
2		10
3		9+6
4		6+9
5		10+5
6		10
Total		80

- 1. Write clearly.
- 2. Show all your steps.
- 3. Mobile phones and smart watches are NOT allowed.
- 4. Set your calculator to RADIAN.
- 5. Use 4 decimal places in your calaculations.

Q1 a) Find the Taylor polynomial $P_2(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$. Approximate $\sqrt{1.25}$.

b) Use two-digit rounding arithmetic to approximate $\frac{\sqrt{13}-\sqrt{12}}{\sqrt{13}+\sqrt{12}}$

Q2. Use the Bisection method to approximate $\sqrt{1 + \sqrt{2}}$ by using the smallest interval [a, b], where a and b are integer (find p_3)

- Q3. a) Show that $g(x) = 2^{-x}$ has a unique fixed point on the interval [1/3, 1].
 - b) Use Corollary 2.5to estimate the number of iterations required to achieve 10^{-2} accuracy with $p_0 = 0.5$.

Q4 Consider $f(x) = sinx - e^{-x}$, with $p_0 = 0.5$

- a) Use the newton's method to calculate p₁.
 b) Using the value obtained in part (a), use the Scant method to approximate the solution within 10^{-4} accuracy.

Q5 Let $f(x) = e^{-x} cosx$, $0 \le x \le 1$

- a) Construct the second Lagrange interpolating polynomial $P_2(x)$ using $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$
- b) Compute the absolute error to approximate f(0.25) by $P_2(0.25)$

Q6. Use the Newton's divided difference to construct interpolating polynomial for the following data: (0, 1), (0.2, 1.04), and (0.4, 1.16).(simplify your answer)

1.
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!} (x - x_{0})^{k} + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_{0})^{(n+1)}$$

2. $|P_{n} - P| \le \frac{b-a}{2^{n}}$
3. $|P_{n} - P| \le \frac{k^{n}}{1-k} |P_{1} - P_{0}|$
4. $|P_{n} - P| \le k^{n} \max[P_{0} - a, b - P_{0}]$
5. $P_{n} = P_{n-1} - \frac{f(P_{n-1})}{f'(P_{n-1})}$
6. $P_{n} = P_{n-1} - \frac{f(P_{n-1})(P_{n-1} - P_{n-2})}{f(P_{n-1}) - f(P_{n-2})}$
7. $P_{n}(x) = \sum_{k=0}^{n} \{f(x_{k}) \prod_{j=0}^{n} \frac{(x - x_{j})}{(x_{k} - x_{j})}\}_{j \ne k}$
8. $f(x) = P_{n}(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{j=0}^{n} (x - x_{j})$
9. $P_{n}(x) = f[x_{0}] + \sum_{k=1}^{n} f[x_{0}, \cdots, x_{k}] \prod_{j=0}^{k-1} (x - x_{j})$
10. $f[x_{k}] = f(x_{k}), \qquad f[x_{k}, x_{k+1}, \cdots, x_{k+j}] = \frac{f[x_{k+1}, \cdots, x_{k+j}] - f[x_{k}, \cdots, x_{k+j-1}]}{x_{k+j} - x_{k}}$