King Fahd University of Petroleum and Minerals

Mathematics Department

Math 371 Exam I, 1st Semester (221),

Net Time Allowed: 90 minutes

October 1st, 2022

Name:			
ID No.:			
Section NO.:			

Please:

- 1. Write clearly with a pen or dark pencil in the designed area for each question.
- 2. Fill your info clearly, and write your ID NO in each page in the right corner inside the box.
- 3. If more space needed, you may use page 9 and 10 but state that clearly in the previous pages.
- 4. Show **all** your steps, no credit will be given to wrong steps.
- 5. Set your calculator to RADIAN

1) Suppose P^* must approximate $P = \sqrt{2}$ with a maximum relative error of 10^{-3} . Find the largest interval in which P^* must lie.

2) Use **two-digits rounding arithmetic** to calculate $\frac{\sqrt{15}-4\pi}{e+2}$.

3) Consider $f(x) = e^{-x} + 2x$.

a) Find the second Taylor polynomial $P_2(x)$ of f about $x_0 = 0$.

b) Approximate f(0.1) by using $P_2(x)$ in part a).

1 point

4 points

c) Find an upper bound for the error in part b).

4) The equation $x - e^{-2x} = 0$ has a single root for $0 \le x \le 1$. Using the initial guess $p_0 = 0.4$ and 4-decimal digits rounding arithmetic, approximate the root of the equation using <u>only one iteration</u> of Newton's method.

a) Use the **Bisection method** to find the first three approximations P_1 , P_2 , P_3 to the root of $\sqrt{x} = \cos x$ in the interval [0,1].

5)

6 points

b) Estimate the minimum number of iterations necessary to solve $f(x) = \sqrt{x} - \cos x = 0$ with an accuracy of 10^{-5} using $a_1 = 0$, $b_1 = 1$.

- 6) To find a root of $x^2 3x 1 = 0$, we can write $x = g_1(x) = \sqrt{3x + 1}$ or $x = g_2(x) = \frac{x^2 1}{3}$.
 - a) Determine if g_1 or g_2 guarantee a **unique fixed point** in the interval [-1,1]. (Show the details)

5 points

b) Compute the root of $x^2 - 3x - 1 = 0$ in the interval [-1,1] using the correct g(x), found in part a), accurate to 10^{-3} with $p_0 = 0.5$.

- 7) Consider the function $f(x) = e^{2x} \cos 3x$.
 - a) Construct the Lagrange interpolating polynomial which interpolates f at $x_0 = 0, x_1 = 0.3, x_2 = 0.6$.

7 points

b) Compute the relative error in using the polynomial in part a) to approximate f(0.4).

a) Use **Newton's divided difference** formula to construct an interpolating polynomial, using all of the following data:

f(0) = 1, f(0.25) = 1.64872, f(0.5) = V.

8)

8 points

b) Suppose the coefficient of x^2 in the polynomial in part a) is 3.3667. Find the value of V.