King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 371 (Al-Homidan)
Exam I, Second Semester (222), 2022-2023 Net Time Allowed: 100 minutes February 18, 2022. 6:00pm-7:40 pm

Name:_____ ID #: _____ Section #:____

Q #	Marks	Maximum Marks
1		15
2		5
3		10
4		10
5		15
6		15
7		10
Total		80

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Mobile phones is NOT allowed in this exam.
- 6. Turn off your mobile.
- 7. Set your calculator to RADIAN
- 8. Use 4 decimal places in your calculations.

1. (15 points) Let $f(x) = e^x \cos x$. Using Taylor's Theorem $f(x) = P_n(x) + R_n(x)$,

a) Find the second-order Taylor polynomial $P_2(x)$ about $x_0 = 0$.

b) Use $P_2(0.5)$ to approximate f(0.5). Find an upper bound for error $|f(0.5) - P_2(0.5)|$ using the reminder term $|R_2(0.5)|$.

c) Approximate $\int_0^1 f(x) dx$ using $\int_0^1 P_2(x) dx$.

Term 222, Math 371,

4. (10 points) Consider the equation x=sin(2x).
a) Given P₀ = 2, find the first iterate, P₁, in using Newton's method to solve the equation.

b) Using Part (a) above, find P_2 by the secant method. (Perform all calculations in Radians and use four decimal places)

 Term 222, Math 371,
 ID NO
 EXAM I
 Page 2 of 6

2. (5 points) Determine the absolute and relative errors when approximating p by p^* when $p = \sqrt{2}$ and when $p^* = 1.414$.

3. (10 points) a) Use Bisection Method to find p_2 (two iterations) for the function $f(x) = \sqrt{x} - \cos x$ on [0, 1].

b) Find the number of iterations (n) necessarily to solve f(x) = 0 with accuracy 10^{-5} ,

 Term 222, Math 371,
 ID NO
 EXAM I
 Page 4 of 6

5. (15 points) Construct the language interpolating polynomial $(P_2(x))$ of the data: $f(x) = \ln x$, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$. Then approximate $\ln 2.5$ (four decimal places).

Term 222, Math 371,

•

6. (15 points) Approximate f(4) by $P_3(4)$ using the following data and the Newton difference formula

(1,2), (2,4), (3,7) and (6,10)

 Term 222, Math 371,
 ID NO _____
 EXAM I
 Page 6 of 6

7. (10 points) In a chemical engineering process, water vapor (H_2O) is heated to sufficiently high temperatures that a significant portion of the water dissociates, or splits apart, to form oxygen (O_2) and hydrogen (H_2) . If it is assumed that this is the only reaction involved, the mole fraction xof (H_2O) that dissociates can be represented by

$$K = \frac{x}{1-x}\sqrt{\frac{2p_t}{2+x}}$$

where K is the reaction's equilibrium constant and p_t is the total pressure of the mixture. If $p_t = 3$ atm and K = 0.05, determine using fixed point method with $x_0 = 0$ the value of x that satisfies the above equation. (Find x_1 and x_2).