King Fahd University of Petroleum and Minerals Department of Mathematics, Math 371
Final Exam, Second Semester (222), 2022-2023
Net Time Allowed: 180 minutes May 20, 2023. 7:00 pm-10:00 pm.

Name:	
ID No.:	
Section No.:	

Please:

- 1. Write your name, ID number and Section number on **both** examination paper and on the answer sheet.
- 2. Make sure that you have two set of exams with total of 20 Questions.
- 3. Write clearly with a pen or dark pencil in the designed area for each question.
- 4. The Test version is already bubbled in the answer sheet. Make sure that it is the same as that printed on your question paper.
- 5. Write clearly with a pen or dark pencil in the designed area for each question.
- 6. When bubbling, make sure that the bubbled space is fully covered.
- 7. When erasing a bubble, make sure that you do not leave any trace of penciling.
- 8. Mobile phones is NOT allowed in this exam.
- 9. Turn off your mobile.
- 10. Set your calculator to RADIAN

- 1. Why is pivoting needed for solving some linear systems?
 - (A) To reduce round-off error.
 - (B) To solve the system faster.
 - (C) To find out if the system has many solutions.
 - (D) To find out if the system cannot be solved.
 - (E) To find out if the system has no solution.

- 2. If the least squares polynomial f(x) = ax + b fits the data (-1,-6), (0,1), (1,4) and (2,-2) then a + b is equal to
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 4

- 3. If we use Newton Divided Difference method to construct interpolating polynomial of degree two for the following data f(0.1) = -0.6, f(0.2) = -0.2, f(0.3) = 0.0, then the resulting polynomial is
 - (A) $-10x^2 + 7x 1.2$
 - (B) $8x^2 + 7x + 1.2$
 - (C) $8x^2 7x + 1.2$
 - (D) $8x^2 + 7x 1.2$
 - (E) $-10x^2 + 7x + 1.2$

4. Consider the natural cubic spline function

$$S(x) = \begin{cases} 1+x, & \text{if } -1 \le x \le 1, \\ \frac{1}{6}x^3 + ax^2 + bx + c, & \text{if } 1 \le x \le 2, \end{cases}$$

then the sum of the coefficients a + b + c is equal to

- (A) 1.83333
- (B) 1.5
- (C) 1.16667
- (D) 2
- (E) 3.8333

5. Consider the clamped cubic spline function

$$S(x) = \begin{cases} a + b(x-1) + c(x-1)^2 + d(x-1)^3, & \text{if} \quad 0 \le x \le 1, \\ (x-1)^3 + gx^2 - 1, & \text{if} \quad 1 \le x \le 2, \end{cases}$$

with f'(0) = 3 and f'(2) = 5 then the sum of the coefficients a+b+c+d+g is equal to

- (A) 2.5
- (B) 1.5
- (C) 2
- (D) 3
- (E) 3.5

6. The linear system

 $4x_1 + x_2 + x_3 = 4$ $x_1 + 3x_2 + x_3 = 6$ $2x_1 + 2x_2 + 5x_3 = 2$

- (A) has a unique solution.
- (B) has no solution.
- (C) does not converge to a unique solution for any initial guess.
- (D) has infinitely many solutions.
- (E) cannot be solved.

- 7. The secant formula to find roots of $x^2 + R = 0$ can be written as:
 - (A) $x_{i+1} = \frac{x_i x_{i-1} R}{x_i + x_{i-1}}$ (B) $x_{i+1} = \frac{1}{2} x_i + \frac{R}{x_i}$ (C) $x_{i+1} = \frac{x_i x_{i-1}}{x_i + x_{i-1}}$ (D) $x_{i+1} = \frac{x_i x_{i-1} + R}{x_i + x_{i-1}}$ (E) $x_{i+1} = \frac{2x_i^2 + x_i x_{i-1} + R}{x_i + x_{i-1}}$

- 8. The approximated value of $\int_0^2 e^{x^2} dx$ using Simpson's rule is
 - (A) 22.1571
 - (B) 30.5432
 - (C) 5.5974
 - (D) 10.3452
 - (E) 15.4326

- 9. Using Bisection method, the number of iterations necessary to find a root for $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$ is
 - (A) 10
 - (B) 8
 - (C) 16
 - (D) 14
 - (E) 12

- 10. When the Lagrange interpolating is used to find a polynomial of degree 2 at the nodes (1,3), (2,5) and (3,1), then the equations $L_2(x) L_0(x)$ is equal to
 - (A) x 2
 - (B) x + 2
 - (C) -x + 2
 - (D) $x^2 + x 2$
 - (E) $x^2 x + 2$

- 11. Using midpoint difference formula, the approximate value of $f''(\frac{\pi}{3})$ for $f(x) = \ln(\sin x)$ with h = 1 is equal to:
 - (A) 2.8842
 - (B) 0.7689
 - (C) 1.3334
 - (D) 1.1315
 - (E) 6.0231

- 12. The fixed point of $x = 2 \sin x$ in the interval $[0, \pi]$ with initial guess $p_0 = 1$ and tolerance $= 10^{-2}$ is approximately equal to:
 - (A) 1.895
 - (B) $\frac{\pi}{2}$
 - (C) $\frac{\pi}{4}$
 - (D) 1.001
 - (E) 2.345

13. The initial value problem

 $y' = y - t^2 + 1, \quad 0 \le t \le 1, \quad y(0) = 0.5$

has the exact solution $y(t) = (t+1)^2 - 0.5e^t$. If Euler's method is used to approximate the IVP with h = 0.2, then the error bound for the approximation of y at t = 1 is

- (A) 0.2577
- (B) 0.1792
- (C) 0.4792
- (D) 0.2792
- (E) 0.0792

14. The minimum number of points n needed to approximate the integral

$$\int_{-5}^{3} (\frac{1}{2}x^3 - 3x^2 + 2x - 1)dx$$

with an error of at most 10^{-2} using the Composite Trapezoidal Rule is

- (A) 300
- (B) 305
- (C) 290
- (D) 312
- (E) 310

- 15. If $x^{(0)} = (0, 0, 0)$, then the second iteration of the Gauss-Seidel method for the following system
 - $3x_1 x_2 + x_3 = 1$ $3x_1 + 6x_2 + 2x_3 = 0$ $3x_1 + 3x_2 + 7x_3 = 4$ is $x^{(2)} = (x_1, x_2, x_3)$, then $x_1 + x_2 + x_3 =$ (A) 0.5079 (B) 0.2222 (C) 0.4076 (D) 0.3242 (E) 0.6178

16. Using Runge-Kutta method of order four with N = 2 to approximate the IVP

$$y' = te^{-3t}y, \quad 0 \le t \le 1, \quad y(0) = 0.5.$$

Then $w_1 =$

- (A) 0.5249
- (B) 0.4295
- (C) 0.0296
- (D) 0.5608
- (E) 0.6324

17. Let $x^{(0)} = (1, 0, 0)$, if the second iteration of the Jacobi method for the following system:

$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}$$

is $x^{(2)} = (x_1, x_2, x_3)$, then $x_1 + x_2 + x_3 =$
(A) -4
(B) -5.5
(C) -4.5
(D) 4.5
(E) 6

King Fahd University of Petroleum and Minerals Department of Mathematics, Math 371
Final Exam, Second Semester (222), 2022-2023
Net Time Allowed: 180 minutes May 20, 2023. 7:00 pm-10:00 pm.

Name:	
ID No.:	
Section No.:	

Please:

- 1. Write clearly with a pen or dark pencil in the designed area for each question.
- 2. Write your ID number in each page in the right corner inside the box.
- 3. Fill your info clearly.
- 4. Show all your steps. No credit will be given to wrong steps.
- 5. If more space needed, use page **4** but state clearly in the question page and page 8 which question you are solving.
- 6. Mobile phones is NOT allowed in this exam.
- 7. Turn off your mobile.
- 8. Set your calculator to RADIAN
- 9. Use 4 decimal places in your calculations.

1. Using finite difference method with h = 0.5 to approximate the solution of BVP:

$$-y'' - 3x^2y' + 2xy = -(2x+3) \qquad 0 \le x \le 2, \qquad y(0) = 2, \quad y(2) = 1.$$

Find the resulting system of equations Aw = b (do not solve the system)

Term 222, Math 371, Final EXAM

2. Find the LU factorization of the matrix

$$A = \begin{bmatrix} 2 & 2 & 6 & 8\\ 2 & 3 & 2 & 5\\ 1 & 1 & -1 & 2\\ -1 & -1 & 1 & 1 \end{bmatrix},$$

then solve the system LUx = b, where $x = (x_1, x_2, x_3, x_4)$ and b = (0, 3, 4, 2).

Term 222, Math 371, Final EXAM ID NO. Version M Page 3 of 4

3. Use Gaussian elimination with partial pivoting and two-digit rounding to solve this system

 $0.1x_1 + x_2 + x_3 = 1,$ $2x_1 + 5x_2 + x_3 = 2,$ $6x_1 + 3x_2 + 3x_3 = 60.$

Ferm 222, Math 371, Final EXAM	ID NO.	Version M	Page 4 of 4
--------------------------------	--------	-----------	---------------------------