King Fahd University of Petroleum and Minerals

Department of Mathematics

Math 371 Exam 1, 1st Semester (231),

Net Time Allowed: 90 minutes

October 7, 2023

Name:	KEY
ID No.:	

Section NO.:

Please:

- 1. Write clearly with a pen or dark pencil in the designed area for each question.
- 2. Fill your info clearly, and write your ID NO in the pages (3, 5, 7, 9) in the right corner inside the box.
- 3. If you need more space, you may use page 9 and 10 but you have to state that clearly in the question's area.
- 4. Show **all** your steps, no credit will be given to wrong steps.
- 5. Set your calculator to RADIAN

Q1. (Q13, sec. 1.1)

(a) Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = (x - 1) \ln x$ about $x_0 = 1$.

(b) Find an upper bound for the error when $\int_{0.5}^{1.5} P_3(x) dx$ is used to approximate $\int_{0.5}^{1.5} f(x) dx$.

Sol: Third Taylor polynomial is

$$P_3(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \frac{(x - x_0)^3}{3!}f'''(x_0)$$

$$f'(x) = \ln x + \frac{x - 1}{x} = \ln x + 1 - \frac{1}{x}, \qquad f''(x) = \frac{1}{x} + \frac{1}{x^2}, \qquad f'''(x) = -\frac{1}{x^2} - \frac{2}{x^3}$$

$$f(1) = 0, \qquad f'(1) = 0, \qquad f''(1) = 2, \qquad f'''(1) = -3$$

$$P_3(x) = 0 + 0 + (x - 1)^2 - \frac{1}{2}(x - 1)^3 = (x - 1)^2 - \frac{1}{2}(x - 1)^3$$

(b)

$$\left| \int_{0.5}^{1.5} f(x) dx - \int_{0.5}^{1.5} P_3(x) dx \right| \le \int_{0.5}^{1.5} |f(x) - P_3(x)| dx$$

$$\le \max_{0.5 \le \xi \le 1.5} \int_{0.5}^{1.5} |R_3(x)| dx = \max_{0.5 \le \xi \le 1.5} \frac{1}{24} \left(\frac{2}{\xi^3} + \frac{6}{\xi^4} \right) \int_{0.5}^{1.5} (x - 1)^4 dx$$

$$= \frac{1}{24} (16 + 96) \frac{(x-1)^5}{5} \bigg|_{0.5}^{1.5} = \frac{112}{24} \left(\frac{1}{80}\right) = 0.0583$$

Q2: (Q14, sec. 1.2)

Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

- (a) Use three-digit rounding arithmetic to evaluate f (0.1).
- (b) If the actual value is f(0.1) = 2.003335. Find the relative error for the values obtained in parts (a).

Sol: (a)

$$e^{0.1} = 1.1051709 = 1.11, \ e^{-0.1} = 0.9048374 = 0.905$$

$$f(0.1) = \frac{1.11 - 0.905}{0.100} = 2.05$$

(b)

The actual value is,

$$f(0.1) = 2.003335$$

The absolute error is,

$$|2.003335 - 2.05| = 0.0467$$

The relative error is,

$$\frac{0.0467}{2.003335} = 0.00166.$$

Q3. (Q18, sec. 2.1)

(a) Find a bound for the number of iterations needed by the Bisection method to achieve an approximation with accuracy 0.1 to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 2].

(b) Find an approximation to the root with this degree of accuracy.

Sol: (a) Using the theorem 2.1,

$$|p_N - p| \le \frac{b_1 - a_1}{2^N} = \frac{2 - 1}{2^N} = \frac{1}{2^N} < 0.1$$

 $2^N > 10 \text{ or } N > \frac{\ln 10}{\ln 2} = 3.3219$

Take N = 4.

(b) Approximate the root of $f(x) = x^3 + x - 4 = 0$ on the interval [1, 2] using Bisection method.

Set $a_1 = 1$, $b_1 = 2$ and calculate $f(a_1) = f(1) = -2 < 0$, $f(b_1) = f(2) = 6 > 0$

$$\frac{(b_1 - a_1)}{2} = \frac{(1 - 0)}{2} = 0.5 < 0.1$$

Since $f(a_1) \cdot f(b_1) < 0$, there is a root in $[a_1, b_1]$.

Find
$$p_1 = \frac{a_1 + b_1}{2} = \frac{1 + 2}{2} = 1.5$$
 and calculate $f(p_1) = f(1.5) = 0.8750 > 0$

Set
$$a_2 = a_1 = 1$$
, $b_2 = p_1 = 1.5$ and find $p_2 = \frac{a_2 + b_2}{2} = \frac{1 + 1.5}{2} = \frac{2.5}{2} = 1.25$

$$\frac{(b_2 - a_2)}{2} = \frac{(1.5 - 1)}{2} = 0.25 < 0.1$$

Calculate $f(p_2) = -0.7969 < 0$. Note $f(a_2) = f(1) = -2$, $f(b_2) = 0.8750$

Set
$$a_3 = p_2 = 1.25$$
, $b_3 = b_2 = 1.5$, find $p_3 = \frac{a_3 + b_3}{2} = \frac{1.25 + 1.5}{2} = \frac{2.75}{2} = 1.3750$.

$$\frac{(b_3 - a_3)}{2} = \frac{(1.5 - 1.25)}{2} = 0.125 < 0.1$$

Calculate $f(p_3) = -0.0254 < 0$. Note $f(a_3) = -0.7969 < 0$, $f(b_3) = 0.8750 > 0$.

Set
$$a_4 = p_3 = 1.3750$$
, $b_4 = b_3 = 1.50$, find $p_4 = \frac{a_4 + b_4}{2} = \frac{1.375 + 1.5}{2} = 1.4375$.

$$\frac{(b_4 - a_4)}{2} = \frac{(1.5 - 1.375)}{2} = 0.0625 < 0.1$$
, STOP.

Q4. (Q7, sec. 2.2)

Use a **fixed-point** iteration method to determine a solution accurate to within 10^{-2} for $x^4 - 3x^2 - 3 = 0$ on [1, 2]. Use $p_0 = 1$ and $g(x) = (3x^2 + 3)^{\frac{1}{4}}$. **Sol:**

Solution is 1.9433.

STOP.

Use the **secant method** to an approximation to the solution of ln(x-1) + cos(x-1) = 0. Let $p_0 = 1.3$ and use the Newton's method to find the second initial. Apply two iterations of the secant method.

Sol: Let
$$f(x) = \ln(x-1) + \cos(x-1)$$
, then, $f'(x) = \frac{1}{x-1} - \sin(x-1)$

Newton's Method

$$p_1 = p_0 - \frac{f(p_0)}{f'(p_0)} = 1.3 - \frac{\ln(1.3 - 1) + \cos(1.3 - 1)}{\frac{1}{1.3 - 1} - \sin(1.3 - 1)} = 1.3818$$

Now Secant Method

Let $p_0 = 1.3$, $p_1 = 1.3818$, then,

$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

$$= p_1 - \frac{(\ln(p_1 - 1) + \cos(p_1 - 1))(p_1 - p_0)}{(\ln(p_1 - 1) + \cos(p_1 - 1)) - (\ln(p_0 - 1) + \cos(p_0 - 1))} = 1.3951$$

$$p_3 = p_2 - \frac{f(p_2)(p_2 - p_1)}{f(p_2) - f(p_1)}$$

$$= p_2 - \frac{(\ln(p_2 - 1) + \cos(p_2 - 1))(p_2 - p_1)}{(\ln(p_2 - 1) + \cos(p_2 - 1)) - (\ln(p_1 - 1) + \cos(p_1 - 1))} = 1.3977$$

Q6. (~Q13, sec. 3.1)

(a) Construct the **Lagrange interpolating** polynomial for the function $f(x) = e^x$ on [-1, 1] using the nodes $x_0 = -1$, $x_1 = 0$, $x_2 = 1$.

(b) Find a bound for the absolute error on the interval $[-1\ 1]$.

Sol: (a)
$$f(x_0) = f(-1) = 0.3679$$
, $f(x_1) = f(0) = 1$, $f(x_2) = f(1) = 2.7183$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 1)}{(-1 - 0)(-1 - 1)} = \frac{1}{2}(x^2 - x)$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x + 1)(x - 1)}{(0 + 1)(0 - 1)} = -(x^2 - 1)$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x + 1)(x - 0)}{(1 + 1)(1 - 0)} = \frac{1}{2}(x^2 + x)$$

So,

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$= \frac{1}{2}(x^2 - x)(0.3679) - (x^2 - 1)(1) + \frac{1}{2}(x^2 + x)(2.7183)$$

$$= 0.54308x^2 + 1.1752x + 1$$

(b) By the **Theorem 3.3**

$$f(x) = e^{x}, \quad f'(x) = e^{x}, \quad f''(x) = e^{x}, \quad f'''(x) = e^{x}$$

$$E_{2}(x) = \frac{f'''(\xi(x))}{3!}(x - x_{0})(x - x_{1})(x - x_{2}) = \frac{e^{\xi}}{3!}(x + 1)(x - 0)(x - 1) = \frac{e^{\xi}}{3!}(x^{3} - x)$$

Let $g(x) = x^3 - x$, then $g'(x) = 3x^2 - 1 = 0 \implies x = \pm \frac{1}{\sqrt{3}}$, these are the critical points

$$g(-1) = 0$$
, $g\left(\frac{-1}{\sqrt{3}}\right) = 0.3849$, $g\left(\frac{1}{\sqrt{3}}\right) = -0.3849$, $g(1) = 0$

Absolute Maximim of g(x) = 0.3849

$$Max|E_2(x)| \le \frac{e}{6}(0.3849) = 0.1744$$

Q7. (Q7, sec. 3.3)

(a) Use Divided -difference method to construct the interpolating polynomial of a heghest degree for the points given in the following table:

x	-0.1	0.0	0.2	0.3
f(x)	5.3	2.0	3.19	1.0

(b) Add f(0.35) = 0.9726 to the lable and construct the interpolating polynomial of a higher degree.

Sol:

-0.1	5.3				
0.0	2.0	2 - 5.3			
		0 + 0.1			
		= -33			
0.2	3.19	3.19 - 2.0	5.95 + 33		
		0.2 - 0.0	0.2 + 0.1		
		= 5.95	= 129.83		
0.3	1.0	1 - 3.19	-21.9 - 5.95	-92.83 - 129.83	
		0.3 - 0.2	0.3 - 0.0	0.3 + 0.1	
		= -21.9	= -92.83	=-556.67	
0.35	0.9726	0.9726 - 1	-0.548 + 21.9	142.35 + 92.83	671.94 + 556.66
		0.35 - 0.3	0.35 - 0.2	0.35 - 0.0	0.35 + 0.1
		=-0.548	= 142.35	= 671.94	= 2730.24

$$a_0 = 5.3, a_1 = -33, a_2 = 129.83, a_3 = -556.67$$

$$P_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

$$= 5.3 - 33(x + 0.1) + 129.83(x + 0.1)(x) - 556.67(x + 0.1)(x)(x - 0.2)$$

$$P_4(x) = P_3(x) + 2730.24(x + 0.1)(x)(x - 0.2)(x - 0.3).$$