King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371
Exam 1
232
Feb 20, 2024
Net Time Allowed: 120 Minutes

MASTER VERSION

1. If the third Taylor polynomial $P_{3}(x)$ approximates $f(x)=(x-1) \ln x$ about $x_{0}=1$ on the interval $[0.5,1.5]$, then the least upper bound for $\left|f(x)-P_{3}(x)\right|$ is
(a) 0.29167 \qquad (correct)
(b) 0.21476
(c) 0.16667
(d) 0.42313
(e) 0.98333
2. If $P_{3}(x)$ is the third Taylor polynomial for the function $f(x)=(x-1) \ln x$ about $x_{0}=1$, then $\int_{0.5}^{1.5} P_{3}(x)=$
(a) 0.083333 \qquad (correct)
(b) 0.088020
(c) 0.088667
(d) 0.090909
(e) 1.110333
3. Suppose p_{0} must approximate 90 with relative error at most 10^{-3}. The largest interval in which p_{0} must lie is
(a) $(89.91,90.09)$ \qquad (correct)
(b) $(89.90,90.10)$
(c) $(89.95,90.05)$
(d) $(88.90,92.10)$
(e) $(89.05,90.51)$
4. Using three-digit chopping arithmetic, $-10 \pi+6 e-\frac{3}{62}=$
(a) -15.2 \qquad (correct)
(b) -15.1
(c) -15.0
(d) -15.3
(e) -14.9
5. Let $f(x)=3(x+1)\left(x-\frac{1}{2}\right)(x-1)=0$. Using the Bisection method on the interval $[-1.25,2.5], p_{3}=$
(a) 1.09375
(b) -0.6875
(c) 0.31250
(d) 2.18750
(e) 0.01250
6. The minimum number of iterations, to solve $f(x)=x^{3}-25$ by the Bisection method correct to within 10^{-4} on the interval $[2,3]$, is
(a) 14 \qquad (correct)
(b) 8
(c) 12
(d) 10
(e) 24
7. Let $f(x)=x^{4}+3 x^{2}-2$. To solve for $f(x)=0$ by fixed-point iteration method, which one of the following functions will converge to the unique fixed point on $[0,1]$?
(a) $g(x)=\sqrt{\frac{2-x^{4}}{3}}$
(b) $g(x)=\sqrt[4]{2-3 x^{2}}$
(c) $g(x)=\frac{2-x^{4}}{3 x}$
(d) $g(x)=\sqrt[3]{\frac{2-3 x^{2}}{x}}$
(e) $g(x)=x^{4}+3 x^{2}-2$
8. Let $f(x)=x-\cos x$ on the interval $[0,1]$. By taking $g(x)=\cos x$ and $p_{0}=0$, the minimum number of iteration necessary to obtain an approximation accurate to within 10^{-5} by fixed-point iteration, is
(a) 67
(b) 27
(c) 17
(d) 87
(e) 57
9. Let $f(x)=-x^{3}-\cos x$. If the Secant method is used with $p_{0}=-1$ and $p_{1}=0$, then $p_{3}=$
(a) -1.25208 \qquad (correct)
(b) 1.25208
(c) -1.53876
(d) 1.53876
(e) 2.01333
10. The equation $4 x^{2}-e^{x}-e^{-x}=0$ has two positive solutions. Using Newton's method with $p_{0}=0.5$ to approximate the solution to within $10^{-1}, p_{n} \approx$
(a) 0.82937 \qquad (correct)
(b) 0.82449
(c) 0.81212
(d) 0.81111
(e) 0.81333
11. By construction the second Lagrange polynomial for $f(x)=\sin \pi x$ and using the nodes $x_{0}=1, x_{1}=1.25$ and $x_{2}=1.6$, the value of $L_{1}(1.25)+L_{0}(1.3)=$
(a) $\frac{9}{10}$ \qquad (correct)
(b) $\frac{1}{10}$
(c) 0
(d) $-\frac{1}{10}$
(e) $-\frac{9}{10}$
12. If the linear Lagrange polynomial for $f(x)=\ln x$ with the nodes $x_{0}=1, x_{1}=1.1$ is constructed, then the smallest error bound is
(a) 1.25×10^{-3} \qquad (correct)
(b) 1.25×10^{-1}
(c) 1.25×10^{-2}
(d) 1.25×10^{-4}
(e) 1.25
13. Let $f(-0.5)=1.93750, f(-0.25)=1.33203$, and $f(0.25)=0.800781$. Using the divided difference formula to find the quadratic interpolating polynomial $P_{2}(x)$, then $P_{2}(0) \approx$
(a) 0.95312 \qquad (correct)
(b) 0.72656
(c) 0.91437
(d) 0.78653
(e) 0.81656
14. If $f[1.3]=0.6200860, f[1.6]=0.4554022$, and $f[1.9]=0.2818186$, then $f[1.3,1.6,1.9]=$ ($f\left[x_{0}, x_{1}, x_{2}\right]$ is the 2 nd divided difference involving x_{0}, x_{1} and x_{2})
(a) -0.0494433 \qquad (correct)
(b) -0.1087339
(c) 0.0118183
(d) -0.5489460
(e) -0.5786120
15. The relative error in approximation of 10^{π} with 1400 is
(a) 1.050×10^{-2} (correct)
(b) 1.454×10^{1}
(c) 1.901×10^{-2}
(d) 1.030×10^{-2}
(e) 3.053×10^{-3}
16. Let $f(x)=\frac{x \cos x-\sin x}{x-\sin x}$. Using four-digit rounding arithmetic, $f(0.1)=$
(a) -1.941
(b) -2.000
(c) -1.996
(d) -1.985
(e) -1.974
