King Fahd University of Petroleum and Minerals Department of Mathematics Math 371 Exam 1 Term 233 10-7-2024 Net Time Allowed: 90 Minutes

MASTER VERSION

MASTER

- 1. If $P_3(x)$ is the third Taylor polynomial for the function $f(x) = 2x \cos(2x) (x-2)^2$ about $x_0 = 0$, then least upper bound for the error $|f(0.4) - P_3(0.4)|$ is
 - (a) 0.05849 _____(correct)
 - (b) 0.08801
 - (c) 0.01087
 - (d) 0.09090
 - (e) 1.11030

- 2. Suppose p^* must approximate $\sqrt[3]{7}$ with relative error at most 10^{-4} . The largest interval in which p^* must lie is
 - (a) (1.9127398, 1.9131224) _____(correct)
 - (b) (1.0912739, 1.0913122)
 - (c) (0.9127224, 0.9131398)
 - (d) (1.9012739, 1.9111224)
 - (e) (1.9117398, 1.9121224)

Term 233, Math 371, Exam 1

MASTER

- 3. Using four-digit rounding arithmetic, $\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} \sqrt{11}} =$
 - (a) 23.96 _____(correct) (b) 25.33
 - (c) 22.27
 - (d) 24.82
 - (e) 24.01

- 4. Let $x^3 7x^2 + 14x 6 = 0$. Using only the Bisection method on the interval [3.4, 3.5], the approximated solution accurate to within 10^{-2} is
 - (a) 3.4187 _____(correct) (b) 3.4140
 - (c) 3.4111
 - (d) 3.4250
 - (e) 3.4176

5. The best (smallest) bound for the number of iterations needed by the Bisection method, to achieve an approximation with accuracy 10^{-3} to solution of $x^3+x-4=0$ lying in [1, 4], is

(a) $n \ge 12$	(correct)
(b) $n \ge 14$	
(c) $n \ge 10$	
(d) $n \ge 6$	
(e) $n \ge 8$	

- 6. Consider a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^3 x 1 = 0$. By taking $p_0 = 1$ and $g(x) = \sqrt{1 + \frac{1}{x}}$, the approximated solution is
 - (a) 1.324 _____(correct)
 - (b) 1.235
 - (c) 1.257
 - (d) 1.706
 - (e) 1.057

MASTER

7. Let $f(x) = 3x^2 - e^x$ on the interval [0,1]. By taking $g(x) = \sqrt{e^x/3}$ and $p_0 = 1$, the minimum number of iteration necessary to obtain an approximation accurate to within 10^{-5} by fixed-point iteration, is

(a) 16 _	(cor	(correct)	
(b) 27			
(c) 13			

- (d) 19
- (e) 11

8. Let $f(x) = -x^3 - \cos x$. If the root of f is approximated by the Secant method with $p_0 = -1$ and $p_1 = 0$, then $p_3 =$

(a) -1.2521	(corr	ect)
(b) -0.2529		
(c) -1.6247		
(d) -0.8791		

(e) -0.7666

MASTER

- 9. The equation $4x^2 e^x e^{-x} = 0$ has two positive solutions. Which of the following initial guess, Newton's method will not work?
 - (a) $p_0 = 0$ _____(correct) (b) $p_0 = -3$ (c) $p_0 = 1$ (d) $p_0 = 5$ (e) $p_0 = -5$

- 10. For $f(x) = \tan(x)$ and letting $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. If the second Lagrange polynomial $P_2(x)$ is used to approximate f(x), then $f(0.45) \approx$
 - (a) 0.4546 _____(correct)
 - (b) 0.4831
 - (c) 0.5333
 - (d) 0.4967
 - (e) 0.4767

- 11. Let P(x) be the interpolating Lagrange polynomial for the data (0,0), (0.5,m), (1,3)and (2,2). If the coefficient of x^3 is 6, then m =
 - (a) 4.25 _______(correct)
 (b) 1.75
 (c) 3.75
 (l) 2.25
 - (d) 2.25
 - (e) 2.75

- 12. Let f(8.1) = 16.94410, f(8.3) = 17.56492, and f(8.6) = 18.50515. Using the divided difference formula to find the quadratic interpolating polynomial $P_2(x)$, then the coefficient of x^2 in P_2 is
 - (a) 0.06 _____(correct)
 - (b) 0.04
 - (c) 0.02
 - (d) 0.08
 - (e) 0.10

13. Giving the following data:

x _i	-2	-1	0	1
$f[x_i]$	-1	3	т	-1

If the 1st divided difference involving -1 and 0 is given to be f[-1,0] = -3, then m + f[-1,0,1] =

(where $f[x_0, x_1, x_2]$ is the 2nd divided difference involving x_0, x_1 and x_2)

- (d) 4
- (e) 5

14. The relative error in approximation of 9! with $\sqrt{18\pi}(9/e)^9$ is

- (a) 9.213×10^{-3} ______(correct) (b) 1.454×10^{-1} (c) 1.901×10^{-2} (d) 7.031×10^{-2}
- (e) 3.053×10^{-3}

15. Let $f(x) = \frac{e^x - e^{-x}}{x}$. Using three-digit chopping arithmetic, $f(\pi) =$

(e) 7.55