- 1. Let $f(x) = x\cos(x) x^2\sin(x)$. Using the most accurate three-point formula and $h = 0.5, f'(2.9) + f'(3.1) \approx$
 - (a) 13.5468 _____(correct)
 - (b) 13.5091
 - (c) 13.4301
 - (d) 13.4029
 - (e) 13.3192

2. Given the function f at the following values,

x	1.8	2.0	2.2	2.4	2.6
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675

By using Simpson's rule, $\int_{2.6}^{1.8} f(x) dx \approx$

- (a) -5.03420 _____(correct)
- (b) -5.02037
- (c) -5.08871
- (d) -5.01992
- (e) -5.01910

3. If Trapezoidal rule applied to $\int_0^4 f(x)$ gives the value 4 and Simpson's rule gives the value 2, then f(2) =

(a) $\frac{1}{4}$ ______ _(correct)

- (b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) $\frac{1}{6}$
- (e) 1

- 4. Using the Composite Simpson's rule with n = 6, $\int_{-0.5}^{0.5} x \ln(x+1) dx \approx$
 - (a) 0.088092 (correct)
 - (b) 0.088020
 - (c) 0.088130
 - (d) 0.088421
 - (e) 0.088143

- 5. Let $f(x) = e^{2x} \sin(3x)$ and given that f''(x) has the maximum value on [0,2] at x = 2. If the largest value of h required to approximate $\int_0^2 f(x) dx$ by Composite Trapezoidal rule to within 10^{-4} is $\frac{2}{\alpha}$, then $\alpha =$
 - (a) 2168 _____(correct)
 - (b) 2024
 - (c) 2215
 - (d) 2097
 - (e) 2197

- 6. Which one of the following functions does not satisfy a Lipschitz condition on the given domain D?
 - (a) $f(t,y) = (1-y^2)^{1/2} + \pi t$ on $D = \{(t,y) | 0 \le t \le 1 \text{ and } -1 \le y \le 1\}$ ___(correct)
 - (b) $f(t,y) = \frac{1+y}{1+t}$ on $D = \{(t,y) | 0 \le t \le 1 \text{ and } -\infty < y < \infty \}$
 - (c) $f(t,y) = \frac{y}{\pi t} + te^y$ on $D = \{(t,y) | 1 \le t \le 2 \text{ and } -2 \le y \le 2\}$
 - (d) $f(t,y) = -y + ty^{1/2}$ on $D = \{(t,y) | 2 \le t \le 3 \text{ and } 2 < y < 3\}$
 - (e) $f(t,y) = 1 + t\sin(ty)$ on $D = \{(t,y) | 0 \le t \le 2 \text{ and } -\infty < y < \infty\}$

7. If Euler's method is used to approximate the solution for the following initial-value problem

$$y' = 1 + y/t + (y/t)^2$$
, $1 \le t \le 3$, $y(1) = 0$,

with h = 0.2, and knowing that $w(t_8) = 3.0028$ then $y(3) \approx$

- (a) 4.5143 _____(correct)
- (b) 5.3333
- (c) 4.9806
- (d) 5.0333
- (e) 5.1056

8. Let $f(x) = 3xe^x - \cos(x)$. If the second derivative midpoint formula is applied with the values of f(x) at x = 0.8, 1.3, and 1.8, then $f''(1.3) \approx$

- (a) 37.8175 _____(correct)
- (b) 36.5935
- (c) 36.6410
- (d) 35.9542
- (e) 35.4131

- 9. If S(x) the natural cubic spline that interpolates the data (-0.25, 1.33203) and (0.25, 0.800781), then S(0.1) =
 - (a) 0.960156 _____(correct)
 - (b) 0.825208
 - (c) 0.703876
 - (d) 1.238176
 - (e) 1.333333

10. If a natural cubic spline S for a function f is defined on [0,3] by

$$S(x) = \begin{cases} x^3 & \text{for } 0 \le x \le 1, \\ \alpha + \beta(x-1) + \gamma(x-1)^2 - \frac{1}{2}(x-1)^3 & \text{for } 1 \le x \le 3, \end{cases}$$

then $\alpha + \beta + \gamma =$

- (a) 7 _____(correct)
- (b) 5
- (c) 3
- (d) 1
- (e) 9

11. Suppose $P(x) = 0.125x^2 + a_0$ is the quadratic least square polynomial for the following data $(1,1), (3,\beta)$. Then, $a_0 =$

(a) 0.875 _____(correct)

- (b) 0.250
- (c) 1.250
- (d) 0.725
- (e) 0.915

- 12. Suppose P(x) is the linear least square polynomial for the following data (-1,-1),(0,1), and $(1,\alpha).$ Then, P(1)=
 - (a) $\frac{5\alpha + 3}{6}$ (correct)
 - (b) α
 - (c) $\frac{3\alpha + 1}{5}$
 - $(d) \ \frac{3\alpha + 2}{4}$
 - (e) $\frac{\alpha+4}{7}$

13. If Euler's method is used to approximate the solution for the following initial-value problem

$$y' = \frac{1+t}{1+y}$$
, $1 \le t \le 2$, $y(1) = 2$,

with h = 0.5 and the actual solution to the initial-value is $y(t) = \sqrt{t^2 + 2t + 6} - 1$, then the actual error at t = 2 is

- (a) 0.033324 _____(correct)
- (b) 0.023645
- (c) 0.063980
- (d) 0.078653
- (e) 0.008165

- 14. If you construct the clamped cubic spline s(x) that interpolates the following data: (1,1) and (2,10) and knowing that f'(1)=2 and f'(2)=20, then the coefficient of x^3 in s(x) is
 - (a) 4 _____(correct)
 - (b) 3
 - (c) 6
 - (d) 8
 - (e) 5

15. Given the initial-value problem

$$y' = 1 + y/t, 1 \le t \le 2, y(1) = 2,$$

with exact solution $y(t) = t \ln(t) + 2t$. If Euler's method is used to approximate the solution with h = 0.25, then the smallest bound for $|y(2) - w_4|$ is (where $w_i \approx y(t_i)$)

- (a) $\frac{e-1}{8}$ _____(correct)
- (b) $\frac{e-1}{10}$
- (c) $\frac{e^2-1}{8}$
- (d) $\frac{e^4 1}{8}$
- (e) $\frac{e^4-1}{4}$