King Fahd University of Petroleum and Minerals Department of Mathematics Math 371 Major Exam I: Section 2 and 4 241 October 02 , 2024 Net Time Allowed: 90 Minutes

MASTER VERSION

- 1. If the second Taylor polynomial $P_2(x)$ approximates $f(x) = x \ln x$ about $x_0 = 1$, then $f(1.5) \approx$
 - (a) 0.6250 _____(correct)
 - (b) 0.6350
 - (c) 0.5250
 - (d) 1.5
 - (e) 0.5

- 2. The least upper bound error for approximate $\int_{1}^{1.5} x \ln x \, dx$ by using the second Taylor polynomial about $x_0 = 1$ is
 - (a) 0.0026 _____(correct)
 - (b) 0.0020
 - (c) 0.0036
 - (d) 0.3600
 - (e) 0.200

3. Let $f(x) = \frac{e^4}{\cos \frac{x}{40} + x}$: using three-digit shopping arithetic, $f(\pi) =$

- (a) 13.000 _____(correct)
- (b) 13.1000
- (c) 13.2000
- (d) 13.12
- (e) 13.1

- 4. Suppose p^* must appropriate 150 with relative error at most 10^{-2} , the largest interval in which p^* must lie is
 - (a) (148.5, 151.5) _____(correct) (b) (148, 151)
 - (c) (147.5, 151.7)
 - (d) (147.4, 151.7)
 - (e) (148.6, 151.6)

5. Let $3x = e^x$. Using the bisection method on the interval [0, 1], then $p_3 =$

- (a) 0.6250 _____(correct)
- (b) 0.6500
- (c) 0.6240
- (d) 0.6325
- (e) 0.6200

6. Let $g(x) = \pi + 0.5 \sin \frac{x}{2}$ on the interval $[0, 2\pi]$ and $p_0 = \pi$. The minimum number of iterations required to achieve 10^{-2} accuracy by fixed point iteration, is

- (d) 7
- (e) 3

- 7. If the secant method used to approximate the solution for the equation $e^x = 3x^2$ with $p_0 = 0$ and $p_1 = 1$, then $p_3 =$
 - (a) 0.9029 _____(correct)
 - (b) 0.9929
 - (c) 0.9129
 - (d) 0.9329
 - (e) 0.9429

- 8. The equation $\sin x = e^{-x}$ has a solution. Using newton's method with $p_0 = 0.5$, the approximation solution to within 10^{-2} then $p_n \approx$
 - (a) 0.5885 _____(correct)
 - (b) 0.5850
 - (c) 0.58985
 - (d) 0.5785
 - (e) 0.5403

9. Let $f(x) = \sqrt{x - x^2}$ and $P_2(x)$ be the interpoluation polynomial an $x_0 = 0$, $x_1 = \frac{1}{2}$ and $x_2 = 1$, then $P_2\left(\frac{1}{3}\right) =$

- (a) 0.4444 _____(correct)
- (b) 0.4333
- (c) 0.4555
- (d) 0.5444
- (e) 0.3333

10. A damped cubic spline s for a function f is defined on [1,3] by

$$\begin{cases} s_0(x) = 3(x-1) + 2(x-1)^2 - (x-1)^3, & 1 \le x < 2\\ s_1(x) = a + b(x-2) + c(x-2)^2 + \frac{1}{3}(x-2)^3, & 2 \le x \le 3 \end{cases}$$

Given f'(1) = f'(3), then a + b + 4c =

- (d) 2
- (e) 6

- 11. Let $f(x) = \ln(x+2) (x-1)^2$. Using the most accurate three-point formula and h = 0.2, f'(-1.2) + f'(-1.6)
 - (a) 13.6236 _____(correct)
 - (b) 13.5236
 - (c) 13.4236
 - (d) 14.7631
 - (e) 14.6237

- 12. Suppose that f(0) = 1, f(0.5) = 2.5, f(1) = 2 and $f(0.25) = f(0.75) = \alpha$. If the composite simpons's rule with n = 4 gives the value $\frac{1}{1.2}$ for $\int_0^1 f(x) dx$, then $\alpha =$
 - (a) 0.25 _____(correct)
 - (b) 0.5
 - (c) 0.125
 - (d) 0.512
 - (e) 1.25

13. The smallest value of n required to approximate $\int_0^{1.5} \frac{1}{x+4}$ to within 10⁻⁴, using composite trapezoidal rule, is

(a) 10	(correct)
(b) 12	
(c) 8	
(d) 7	
(e) 13	

14. Given the initial-value problem is

$$y' = \frac{t}{y}, \ 0 \le t \le 1, \ 2 \le y \le 3,$$

then the smallest value of Lipschiz constant L is

