King Fahd University of Petroleum and Minerals Department of Mathematics Math 371 Math371 Exam 1 Term 241 October 02, 2024 Net Time Allowed: 90 Minutes

MASTER VERSION

- 1. If $P_3(x)$ is the third Taylor polynomial for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$, then $P_3(0.25)$ is,
 - (a) 1.1182 _____(correct)
 - (b) 1.1179
 - (c) 1.1192
 - (d) 1.1221
 - (e) 1.1103

2. Using three-digit rounding arithmetic to calculate, $\frac{e^2 - \pi}{\frac{12}{17} + \sin(2)}$,

- (e) 2.74

MASTER

- 3. Let $f(x) = \sqrt{x} \cos(x)$. If p_3 is an approximation of the root of f(x) = 0 using the Bisection method on the interval [0, 1], then $f(p_3)$ is,
 - (a) -0.0204 ______(correct)
 (b) 0.0204
 (c) 0.0134
 (d) -0.0134
 - (e) -0.170

- 4. If $g(x) = \frac{1}{2}(x^3+1)$ is used, with fixed-point method, to find a root of $x^3 2x + 1 = 0$ with $p_0 = 0.5$, then p_3 is equal to,
 - (a) 0.6022 _____(correct)
 - (b) 0.5892
 - (c) 0.5689
 - (d) 0.6222
 - (e) 0.6502

- 5. The function $g(x) = \pi + \frac{1}{2}\sin(\frac{x}{2})$ has a unique fixed point in the interval $[0, 2\pi]$. Taking $p_0 = \pi$ and using the Corollary 2.5, the minimum number of iteration necessary to obtain an approximation accurate to within 10^{-3} by the fixed-point iteration is,

 - (e) 3

- 6. Let $f(x) = x^2 6$. If secant method is used with $p_0 = 3$ and $p_1 = 2$, then p_3 is equal to,
 - (a) 2.4545 _____(correct)
 - (b) 2.5454
 - (c) 2.4495
 - (d) 2.4321
 - (e) 2.4500

- 7. For which initial guess p_0 , the Newton's method fails to approximate a root of $\frac{1}{3}x^3 \frac{5}{2}x^2 + 6x = 0$,
 - (a) $p_0 = 3$ _____(correct) (b) $p_0 = 0$ (c) $p_0 = 1$ (d) $p_0 = 5$ (e) $p_0 = 4$

- 8. Let $x_0 = 0$, $x_1 = 0.5$, and $x_2 = 1$. If the second degree Lagrange polynomial $P_2(x)$ is used to approximate $f(x) = \ln(x+1)$. Then $P_2(0.75)$ is,
 - (a) 0.56403 _____(correct)
 - (b) 0.54603
 - (c) 0.55962
 - (d) 0.55555
 - (e) 0.57670

Page 5 of 7

MASTER

9. If the Natural cubic spline defined on the interval [0, 2] is,

$$S(x) = \begin{cases} 2 + 3x + 2x^3, & \text{if } 0 \le x \le 1, \\ a_1 + b_1(x - 1) + c_1(x - 1)^2 + d_1(x - 1)^3, & \text{if } 1 \le x \le 2, \\ \text{then } a_1 + b_1 + c_1 + d_1 \text{ is equal to,} \end{cases}$$

- (a) 20 _____(correct) (b) 18 (c) 15
- (d) 24
- (e) 22

- 10. Let f(1) = 1, f(1.2) = 1.2625 and f(1.4) = 1.6595. Using most accurate 3-points formulas, the sum f'(1) + f'(1.2) is equal to,
 - (a) 2.6251 _____(correct)
 - (b) 2.6294
 - (c) 2.6543
 - (d) 2.2496
 - (e) 3.4965

11. Let $f(x) = 3xe^{-2x}$. The approximate value of f''(0.5) with h = 0.1 is equal to,

- (a) -2.2294 _____(correct) (b) -0.2229
- (c) -2.5423
- (d) 2.2596
- (e) -2.9654

12. Approximate value of the integral $\int_{0}^{2} e^{-2x} \cos(3x) dx$ using the composite Trapezoidal rule with n = 4 is,

- (a) 0.19517 _____(correct)
- (b) 0.21324
- (c) 0.29757
- (d) 0.15571
- (e) 0.20547

13. The smallest value of n required to approximate the integral $\int_{1}^{3} x^2 \ln(x) dx$ by composite Simpson's rule within 10^{-4} is,

(a) 8	3	(correct)
(b) 6	5	
(c) 1	10	
(d) 1	12	

(e) 9

14. Which of the following functions satisfy the Lipschitz condition on the given domain.

(a)
$$f(t, y) = ty + \sin(ty)$$
 on $D = \{(t, y) | 0 \le t \le 4, 0 \le y \le 4\}$ (correct)
(b) $f(t, y) = t^2 \ln(y)$ on $D = \{(t, y) | 1 \le t \le 2, 0 \le y \le 2\}$
(c) $f(t, y) = \frac{\sin(t)}{(1+y)}$ on $D = \{(t, y) | 0 \le t \le \pi, -1 \le y \le 1\}$
(d) $f(t, y) = 2t + \tan(y)$ on $D = \{(t, y) | 1 \le t \le 2, 0 \le y \le \pi\}$
(e) $f(t, y) = 2t^2 + \sqrt{1 - y^2}$ on $D = \{(t, y) | 0 \le t \le 2, -2 \le y \le 2\}$