King Fahd University of Petroleum and Minerals

Department of Mathematics - College of Computing and Mathematics Math 371 - Numerical computing Exam I, First Semester (241), 2024-2025 Net Time Allowed: 90 minutes

Name :	
ID :	Section :

Question 1: The fifth approximate solution of $\exp(-x) = 3\log(x)$ using the bisection method in the interval [0.5, 1.5] is

- (a) 1.9038
- (b) 1.0625
- (c) 1.0938
- (d) 1.1250
- Question 2: Secant method is slower than Newton method
 - (a) False
 - (b) True

Secant method's iteration requires

- (a) one point-value
- (b) two point-values
- (c) three point-values

Question 3:

x	0.25	0.5	0.75
f(x)	1.65	2.72	4.49

The approximate value of f(0.43) using the second order Lagrange interpolating polynomial is

- (a) 2.5147
- (b) 2.3014
- (c) **2.3498**
- (d) 3.0241

Question 4: Using four-digit rounding arithmetic $\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$

- (a) 23.95
- (b) **23.96**
- (c) 23.90
- (d) 24.01

Question 5:

ſ	x	1.8	2.0	2.2	2.4	2.6
	f(x)	3.1204	m	6.0424	8.03014	10.46675

If the composite Simpson's rue gives $\int_{1.8}^{2.6} f(x) dx = 5.03420$, then m is

- (a) 4.44217
- (b) 3.44559
- (c) 4.34331
- (d) 10.8479

Question 6: Using the three-point midpoint formula for $f(x) = x\cos(x) - x^2\sin(x)$, h = 0.5, the absolute error on approximating f'(2) is

- (a) 0.4235
- (b) 0.1001
- (c) 0.0423
- (d) 0.6023

Question 7: Let $f(x) = 3x^2 - exp(x)$ and given that f''(x) has the maximum value on [0, 2] at $x = \ln(6)$, the larger h to have the error, of approximating $f'(x_0)$ by forward difference formula, within 10^{-2} is

- (a) ≤ 0.1812
- (b) ≤ 0.0043
- (c) ≤ 0.0017
- (d) ≤ 0.5741

Question 8: The natural cubic spline of the data (1, 1), (2, 5), and (3, 4) is

$$S(x) = \begin{cases} -\alpha x^3 + 3.75x^2 + 1.50x - 3.00 & \text{if } 1 \le x \le 2\\ \alpha x^3 - 11.25x^2 + 31.50x - 23.00 & \text{if } 2 \le x \le 3 \end{cases}$$

The value of α is

- (a) 2.50
- (b) 7.01
- (c) 1.25
- (d) -10.04

Question 9: If P_2 is the second Taylor polynomial for $f(x) = 2x\cos(2x) - (x-2)^2$ about $x_0 = 0$, then the bound for the error $|f(0.3) - P_2(0.3)|$ is

- (a) **0.1948**
- (b) 0.0951
- (c) 0.2074
- (d) 1.0178

Question 10: The composite Trapezoidal rule applied to $\int_1^3 \frac{dx}{7-2x}$ with h = 0.5 gives

- (a) 0.2591
- (b) 3.2013
- (c) **0.8417**
- (d) 1.0384

Question 11: The stepsize h such that the absolute value of the error is within 5.10^{-4} when the composite Trapezoidal rule is used to approximate the integral $\int_2^7 \frac{dx}{x}$ is less than

- (a) 0.1445
- (b) 0.2591
- (c) 0.0133
- (d) 0.0693

Question 12: Let $f(x) = 3x^2 - exp(x)$ on the interval [0,1]. By taking $g(x) = \sqrt{exp(x)/3}$ and $p_0 = 0.5$ the minimum number of iterations necessary to obtain an approximation accurate to within 10^{-4} by fixed-point iteration, is

- (a) 16
- (b) 15
- (c) **12**
- (d) 11

Question 13: Using four-digit rounding arithmetic $\frac{7\pi-22}{e-3.2}$ is

- (a) 0.02075
- (b) 0.0207
- (c) 0.02074
- (d) 0.02080

Question 14: The equation $4x^2 - exp(x) - exp(-x) = 0$ has two positive solutions. Which of the following initial guess, Newton method will not work ?

- (a) $p_0 = 1$
- (b) $p_0 = 2$
- (c) $p_0 = 0$
- (d) $p_0 = 3$