1. Given the nonlinear system

$$3x_1^2 - x_2^2 = 0$$
$$x_1x_2^2 - x_1^3 = 1$$

Using the method of steepest Descent with $X^{(0)} = [1, 1]^t$ and $\alpha = 0.01$, then $X^{(1)} \approx$

- (a) $[0.72, 1.12]^t$
- (b) $[0.6, 1.16]^t$
- (c) $[0.8, 1.06]^t$
- (d) $[0.92, 1.06]^t$
- (e) $[0.82, 1.16]^t$

2. Given the nonlinear system

$$3x_1^2 - x_2^2 = 0$$
$$x_1x_2^2 - x_1^3 = 1$$

Using the Newton's method with $X^{(0)} = [1, 1]^t$ then $X^{(1)} \approx$

- (a) $[0.75, 1.25]^t$
- (b) $[0.72, 1.06]^t$
- (c) $[0.85, 1.75]^t$
- (d) $[0.75, 1.06]^t$
- (e) $[0.95, 1.75]^t$

- 3. Given the following data (-1,0), (0,1), (1,4). Using Singular value decomposition to determine the least squares polynomial $P_1(x) = a_1 x + a_0$, then $P_1\left(\frac{1}{2}\right) \approx$
 - (a) $\frac{8}{3}$ (b) $\frac{7}{3}$ (c) 2 (d) $\frac{5}{3}$

 - (e) 1

4. Which of the following matrices are orthogonal matrix

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -1\\ \frac{1}{\sqrt{2}} & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & \frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}, C = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

- (a) C only
- (b) A only
- (c) B only
- (d) A and C
- (e) B and C

5. Given the linearly independent vectors

$$X^{(1)} = (2, 0, 0)^t$$
, $X^{(2)} = (1, 1, 0)t$, and $X^{(3)} = (1, 1, 1)^t$.

Using Gram-Schmidt Process to determine a set of orthogonal vectors $V^{(1)}$, $V^{(2)}$, $V^{(3)}$ from $X^{(1)}$, $X^{(2)}$, $X^{(3)}$ then $V^{(2)} =$

- (a) $(0,1,0)^t$
- (b) $(0,0,1)^t$
- (c) $(1,0,0)^t$
- $(d) \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)^t$
- (e) $\left(\frac{1}{2}, \frac{\sqrt{1}}{2}, 0\right)^t$

6. Given the following data:

i	x_i	$ y_i $	
1	1	5.1	Construct the least squares approximation of the form
2	1.25	5.79	
3	1.5	6.53	
$P(x) = be^{ax}$, then $P(1.5) \approx$			

- (a) 6.5368
- (b) 7.5368
- (c) 5.5368
- (d) 4.5573
- (e) 5.5666

7. If the Euler's Method is used to approximate the initial-value problem

$$y' = e^{t-y}$$
, $0 \le t \le 1$, $y(0) = 1$, with $h = 0.5$, then $w_2 \approx$

- (a) 1.4363
- (b) 1.5243
- (c) 2.3363
- (d) 1.2343
- (e) 1

8. Given the following data f(1.4) = 10.3, f(1.5) = 12.3, f(1.6) = 15.3, f(1.8) = 20. Using the three points formula to approximate f'(1.6)

- (a) 35
- (b) 34
- (c) 36
- (d) 33
- (e) 37

9. Using the Composite Simpson's rule with n=4 to approximate

$$\int_0^2 x \cos^2 x \, dx, \int_0^2 x \cos^2 x \, dx \approx$$

- (a) 0.4168
- (b) 0.5178
- (c) 0.61670
- (d) 0.8168
- (e) 0.32178

10. If the linear Finite-Difference Method is used to approximate the solutions of the boundary value problem

$$y'' = 4y, \ 0 \le x \le 1, \ y(0) = 1, \ y(1) = e^{(-2)}$$

with
$$h = \frac{1}{4}$$
, then $y\left(\frac{1}{2}\right) \approx$

- (a) 0.3707
- (b) 0.4370
- (c) 0.4717
- (d) 0
- (e) 1

11. Given the nonlinear system

$$x_1^2 + x_2 = 37$$

$$x_1 - x_2^2 = 5$$

$$x_1 + x_2 + x_3 = 3$$

Using the Newton's method with $X^{(0)} = (0,0,0)^t$ then $X^{(2)} \approx$

- (a) $[4.3509, 18.4912, -19.8421]^t$
- (b) $[4.9509, 18.4912, -21.8421]^t$
- (c) $[4.3509, 17.4912, -19.7821]^t$
- (d) $[5.3509, 18.8912, -19.1432]^t$
- (e) [1, 1, 1, 1]

12. Using Newton's Method to find a solution for $2x = \sin x + 1$, by taking $p_0 = 0$, then $p_2 =$

- (a) 0.8914
- (b) 0.7904
- (c) 1.0101
- (d) 0.6704
- (e) 0.6604

13. Given the non linear system

$$x_2x_1 + x_2 = 1$$
$$x_1 - x_2^2 = 3$$

Using the method of steepest Descent with $X^{(0)} = [0, 0]^t$ and $\alpha = 0.1$, the $X^{(2)} \approx$

- (a) $[1.1152, 0.2240]^t$
- (b) $[1.1153, 0.3241]^t$
- (c) $[1.2153, 0.3451]^t$
- (d) $[1.3152, 0.4321]^t$
- (e) $[1,1]^t$

14. Let f(0) = 1, f(1) = 0, and f(2) = -2. If the Lagrange interpolating polynomial of degree two is used, then $f(1.5) \approx$

- (a) -0.875
- (b) -0.987
- (c) -0.785
- (d) -1.175
- (e) -1

15. A clamped cubic spline S for a function f is defined by

$$S(x) = \begin{cases} S_0(x) = 1 + \beta x + 2x^2 - 2x^3, & \text{if } 0 \le x < 1 \\ S_1(x) = 1 + b(x - 1) - 4(x - 1)^2 + 7(x - 1)^3, & \text{if } 1 \le x \le 2 \end{cases}$$

then f'(0) + f'(2) =

- (a) 11
- (b) 10
- (c) 9
- (d) 12
- (e) 0

16. The row interchanges that are required to solve the following linear system using Gaussian Elimination with **partial pivoting**

$$2x_1 - 3x_2 + 2x_3 = 5$$
$$-4x_1 + 2x_2 - 6x_3 = 14$$
$$2x_1 + 2x_2 + 4x_3 = 8$$

- (a) interchange rows 1 and 2, then interchange rows 2 and 3
- (b) interchange rows 1 and 2 only
- (c) interchange rows 2 and 3 only
- (d) interchange rows 1 and 3 only
- (e) interchange rows 1 and 2, then interchange rows 1 and 3

17. If
$$A = LU$$
, where $L = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$, U is upper triangular form and $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix}$, then $a+b+2c=$

- (a) 2
- (b) 0
- (c) 1
- (d) 3
- (e) 2.5

18. If
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 5 & -2 \\ -7 & 2 & 0 \end{bmatrix}$$
, then $||A||_{\infty} =$

- (a) 9
- (b) 4
- (c) 3
- (d) 2
- (e) 0

19. Let $X^{(0)} = (0,0,0)$. If $X^{(2)}$ is the second iteration of the Jacobi method for the system

$$10x_1 - x_2 = 9$$

$$-x_1 + 10x_2 - 2x_3 = 7$$

$$-2x_2 + 10x_3 = 6,$$
then $x_2^{(2)} \approx$

- (a) 0.91
- (b) 0.99
- (c) 1
- (d) 0.98
- (e) 0.95

20. Given the boundary-value problem

$$y'' = 4y - 4x$$
, $0 \le x \le 1$, $y(0) = 0$, $y(1) = 2$

Using the linear finite difference method with $h = \frac{1}{4}$, to find the matrix form AW = b, then the sum of second column of A is equal to

- (a) $\frac{1}{4}$
- (b) $\frac{1}{2}$ (c) $\frac{3}{4}$
- (d) 0
- (e) 1