King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371 Major Exam I 251

September 28 , 2025 Net Time Allowed: 90 Minutes

MASTER VERSION

1. If the third <u>Taylor polynomial</u> $P_3(x)$ approximates $f(x) = (x-1)\ln(x)$ about $x_0 = 1$, then $P_3(0.8) =$

(a) 0.0440 _____(correct)

- (b) 0.0400
- (c) 0.0445
- (d) 0.0420
- (e) 0.0450

- 2. If the third <u>Taylor polynomial</u> $P_3(x)$ approximates $f(x) = e^{2x} \cos(2x)$ about $x_0 = 0$, then the least upper bound for $|f(x) P_3(x)|$ on the interval [-0.1, 0.1] is equal to
 - (a) 3.2571×10^{-4} _____(correct)
 - (b) 3.6667×10^{-4}
 - (c) 2.7513×10^{-4}
 - (d) 3.3334×10^{-3}
 - (e) 3.6667×10^{-3}

- 3. If $f(x) = \frac{5 x + 8 e}{x + 3}$, then using **three-digit chopping** arithmetic $f(\pi)$ is equal to
 - (a) 6.07 _____(correct)
 - (b) 6.09
 - (c) 7.08
 - (d) 7.03
 - (e) 6.77

- 4. Suppose p^* must approximate p = 900 to three-significant digits. Then the largest interval in which p^* must lie is
 - (a) [895.5, 904.5] _____(correct)
 - (b) [897, 903]
 - (c) (895.5, 904.5)
 - (d) (897, 903)
 - (e) [897.5, 903.5]

5. Using the <u>Bisection</u> method to approximate the zero of $f(x) = x^3 + 4x^2 - 10$ on [1, 2], then $p_4 =$

(a) 1.3125 _____(correct)

- (b) 1.2577
- (c) 1.3157
- (d) 1.3515
- (e) 1.1253

6. The function $g(x) = \pi + 0.5 \sin(\frac{x}{2})$ has a unique fixed point on $[0, 2\pi]$. Use $p_0 = \frac{\pi}{2}$ and the **error inequality** to estimate the minimum number of iterations required to achieve 10^{-8} accuracy by **fixed point iteration** method

(a) 14 _____(correct)

- (b) 16
- (c) 12
- (d) 10
- (e) 18

7. The equation $e^x - 3x^2 = 0$ has two positive solutions. Use **Newton's method** with $p_0 = 4$ to find solution accurate to within 10^{-6} :

(a) 3.733079 _____(correct)

- (b) 3.735312
- (c) 3.784361
- (d) 3.784578
- (e) 3.788234

- 8. Let $f(x) = x^2 6$. If the root of f is approximated by the <u>Secant method</u> with $p_0 = 3$ and $p_1 = 2$, then $p_3 =$
 - (a) 2.4545 _____(correct)
 - (b) 2.4449
 - (c) 2.4000
 - (d) 2.4995
 - (e) 2.4949

- 9. Let $P_2(x)$ be the **second Lagrange polynomial** for $f(x) = \tan(1+x)$ using the nodes $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. Then $P_2(0.45) =$
 - (a) -37.5851 _____(correct)
 - (b) 8.2380
 - (c) 0.0906
 - (d) 12.9012
 - (e) 38.8953

- 10. If S(x) is a **natural cubic spline** that interpolates a function f(x) at the points (1,1),(2,6) and (4,4), then S(3) =
 - (a) 13/2 _____(correct)
 - (b) 5
 - (c) 6
 - (d) 29/4
 - (e) 11/2

11. A clamped cubic spline S for a function f is defined on [1, 3] by

$$\begin{cases} S_0(x) = 1 + b(x-1) + 3(x-1)^2 + a(x-1)^3, & 1 \le x < 2, \\ S_1(x) = 4 + d(x-2)^2 + 5(x-2)^3, & 2 \le x \le 3. \end{cases}$$

Given that f'(1) = f'(3), then $a^2 + b^2 + d^2 =$

- (a) 54 _____(correct)
- (b) 13
- (c) 34
- (d) 49
- (e) 64

12. Consider the data in the given table. Using the most accurate three-point formula, $f'(8.6) \approx$

x	8.3	8.4	8.5	8.6	8.8
f(x)	17.56492	17.87714	18.19056	18.50515	19.13781

- (a) 3.151808 _____(correct)
- (b) 2.351401
- (c) 3.198091
- (d) 2.351808
- (e) 2.198091

13. Use the **composite Simpson's rule** with n = 6 to approximate the integral

$$\int_0^{12} \frac{x}{x^2 + 4} \ dx \approx$$

- (a) 1.8007 _____(correct)
- (b) 1.8557
- (c) 1.5777
- (d) 1.8054
- (e) 1.5007

14. By using the error term in Composite Trapezoidal rule, the smallest value of n required to approximate

$$\int_0^{\pi} \sin(x) dx \quad \text{within} \quad 10^{-4} \text{ is}$$

- (a) 161 _____(correct)
- (b) 360
- (c) 257
- (d) 20
- (e) 38