King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371 Major Exam I 251 September 28, 2025

EXAM COVER

Number of versions: 4 Number of questions: 14

King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371 Major Exam I 251

September 28, 2025 Net Time Allowed: 90 Minutes

MASTER VERSION

- 1. Let $P_2(x)$ be the second Taylor polynomial of $f(x) = e^x \cos x$ about $x_0 = 0$. Then the least upper bound for $|f(x) P_2(x)|$ in the interval [0, 1] is
 - (a) 1.252 _____(correct)
 - (b) 1.821
 - (c) 1.485
 - (d) 1.036
 - (e) 1.360

2. Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

Use three-digit rounding arithmetic to compute f(0.1)

- (a) 2.05 _____(correct)
- (b) 2.25
- (c) 2.003
- (d) 2.03
- (e) 2.15

3. The bound of number of iterations using bisection method needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 4] is

(a) $n \ge 12$ _____(correct)

- (b) $n \ge 3$
- (c) $n \ge 10$
- (d) $n \ge 5$
- (e) $n \ge 15$

- 4. The bisection method converges to which of the zero of $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ in the interval [-1.75, 1.5]
 - (a) -1 _____(correct)
 - (b) 1
 - (c) 0
 - (d) 2
 - (e) -2

5. Using the fixed-point iteration $x_{n+1} = g(x_n)$ to compute $\alpha = \sqrt[3]{21}$, which of the following functions does **not** converge to α for any initial guess $x_0 \in [2, 3]$? Assume each g is well-defined and differentiable on [2, 3].

(a)
$$g(x) = \frac{x^3 - x^4}{x^2 - 21}$$
 ______(correct)

(b)
$$g(x) = x - \frac{x^3 - 21}{3x^2}$$

(c)
$$g(x) = \frac{20}{21}x + \frac{1}{x^2}$$

(d)
$$g(x) = \frac{\sqrt{21}}{x^{1/2}}$$

(e)
$$g(x) = x - \frac{x^3 - 21}{30}$$

- 6. Using Newton's method with initial guess $p_0 = 1.5$ to approximate a root of $f(x) = x^2 4x + 4 \ln x$ accurate to within 10^{-3}
 - (a) 1.4123911717 _____(correct)
 - (b) 1.4506567213
 - (c) 1.4067209351
 - (d) 1.2383198213
 - (e) 1.7090412323

7. Using the secant method, find p_3 for $f(x) = x^2 - 6$ with initial guesses $p_0 = 3$ and $p_1 = 2$.

- (a) $p_3 = 2.45454$ ______(correct)
- (b) $p_3 = 2.55456$
- (c) $p_3 = 2.4$
- (d) $p_3 = 2.35344$
- (e) $p_3 = 2.3$

8. Let $P_2(x)$ be the quadratic Lagrange interpolant to $f(x) = \ln x$ at the nodes $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$. Find the smallest bound for $|f(1.2) - P_2(1.2)|$.

- (a) 6.67×10^{-4} _____(correct)
- (b) 3.03×10^{-4}
- (c) 3.33×10^{-4}
- (d) 1.33×10^{-3}
- (e) 4.43×10^{-3}

9. If the Natural cubic spline

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0 x + c_0 x^2 + d_0 x^3 & \text{if } x \in [0, 1] \\ S_1(x) = a_1 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3 & \text{if } x \in [1, 2] \end{cases}$$

interpolate the data (0,0), (1,1), (2,2), then $a_0 + b_0 + a_1b_1 + 2c_0c_1 + d_1 =$

- (a) 2 _____(correct)
- (b) 3
- (c) 1
- (d) 0
- (e) 4

10. Let f(0.5) = 0.4794, f(0.6) = 0.5646, f(0.7) = 0.6442. Using the most accurate 3-point formulas, the sum f'(0.5) + f'(0.6) is equal to

- (a) 1.7040 _____(correct)
- (b) 0.8800
- (c) 0.8420
- (d) 0.7860
- (e) 1.6480

11. Consider the following table of data

	x	0.2	0.4	0.6	0.8	1.0
Ì	f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

Using a step size h = 0.2, $f''(0.6) \approx$

- (a) -1.4924 ______(correct)
- (b) -1.4652
- (c) 1.4924
- (d) -5.9696
- (e) -0.3731

12. Use the composite Trapezoidal rule with n=4 equal subintervals to approximate

$$\int_{-2}^{2} x^3 e^x \, dx$$

Which of the following is the resulting approximation?

- (a) 31.3653 _____(correct)
- (b) 22.4771
- (c) 19.9207
- (d) 14.5068
- (e) 11.2018

13. The minimum value of n required to approximate the integral

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} using composite Simpson's rule is

- (a) 6 _____(correct)
- (b) 5
- (c) 4
- (d) 3
- (e) 2

- 14. Suppose p^* is used to approximate the number 5, with relative error at most 10^{-3} . Find the largest interval in which p^* must lie.
 - (a) [4.995, 5.005] _____(correct)
 - (b) [4.999, 5.001]
 - (c) [4.95, 5.05]
 - (d) [-5.005, -4.995]
 - (e) [4.990, 5.010]

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 371 Major Exam I 251

September 28, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If the Natural cubic spline

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0 x + c_0 x^2 + d_0 x^3 & \text{if } x \in [0, 1] \\ S_1(x) = a_1 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3 & \text{if } x \in [1, 2] \end{cases}$$

interpolate the data (0,0), (1,1), (2,2), then $a_0 + b_0 + a_1b_1 + 2c_0c_1 + d_1 =$

- (a) 0
- (b) 4
- (c) 2
- (d) 3
- (e) 1

2. Consider the following table of data

x	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

Using a step size h = 0.2, $f''(0.6) \approx$

- (a) -1.4924
- (b) -5.9696
- (c) -0.3731
- (d) -1.4652
- (e) 1.4924

3. Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

Use three-digit rounding arithmetic to compute f(0.1)

- (a) 2.003
- (b) 2.05
- (c) 2.25
- (d) 2.15
- (e) 2.03

4. Use the composite Trapezoidal rule with n=4 equal subintervals to approximate

$$\int_{-2}^{2} x^3 e^x \, dx$$

Which of the following is the resulting approximation?

- (a) 11.2018
- (b) 22.4771
- (c) 19.9207
- (d) 31.3653
- (e) 14.5068

5. The minimum value of n required to approximate the integral

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} using composite Simpson's rule is

- (a) 2
- (b) 3
- (c) 6
- (d) 5
- (e) 4

- 6. Suppose p^* is used to approximate the number 5, with relative error at most 10^{-3} . Find the largest interval in which p^* must lie.
 - (a) [4.95, 5.05]
 - (b) [-5.005, -4.995]
 - (c) [4.999, 5.001]
 - (d) [4.995, 5.005]
 - (e) [4.990, 5.010]

- 7. Using Newton's method with initial guess $p_0 = 1.5$ to approximate a root of $f(x) = x^2 4x + 4 \ln x$ accurate to within 10^{-3}
 - (a) 1.7090412323
 - (b) 1.4067209351
 - (c) 1.2383198213
 - (d) 1.4123911717
 - (e) 1.4506567213

- 8. The bisection method converges to which of the zero of $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ in the interval [-1.75, 1.5]
 - (a) 0
 - (b) -1
 - (c) 2
 - (d) -2
 - (e) 1

- 9. Using the fixed-point iteration $x_{n+1} = g(x_n)$ to compute $\alpha = \sqrt[3]{21}$, which of the following functions does **not** converge to α for any initial guess $x_0 \in [2, 3]$? Assume each g is well-defined and differentiable on [2, 3].
 - (a) $g(x) = x \frac{x^3 21}{30}$
 - (b) $g(x) = x \frac{x^3 21}{3x^2}$
 - (c) $g(x) = \frac{\sqrt{21}}{x^{1/2}}$
 - (d) $g(x) = \frac{20}{21}x + \frac{1}{x^2}$
 - (e) $g(x) = \frac{x^3 x^4}{x^2 21}$

- 10. Let $P_2(x)$ be the second Taylor polynomial of $f(x) = e^x \cos x$ about $x_0 = 0$. Then the least upper bound for $|f(x) P_2(x)|$ in the interval [0, 1] is
 - (a) 1.036
 - (b) 1.821
 - (c) 1.252
 - (d) 1.485
 - (e) 1.360

- 11. Using the secant method, find p_3 for $f(x) = x^2 6$ with initial guesses $p_0 = 3$ and $p_1 = 2$.
 - (a) $p_3 = 2.3$
 - (b) $p_3 = 2.4$
 - (c) $p_3 = 2.45454$
 - (d) $p_3 = 2.35344$
 - (e) $p_3 = 2.55456$

- 12. Let f(0.5) = 0.4794, f(0.6) = 0.5646, f(0.7) = 0.6442. Using the most accurate 3-point formulas, the sum f'(0.5) + f'(0.6) is equal to
 - (a) 0.8800
 - (b) 1.6480
 - (c) 0.8420
 - (d) 1.7040
 - (e) 0.7860

- 13. The bound of number of iterations using bisection method needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4] is
 - (a) $n \ge 15$
 - (b) $n \ge 12$
 - (c) $n \ge 10$
 - (d) $n \ge 3$
 - (e) $n \ge 5$

- 14. Let $P_2(x)$ be the quadratic Lagrange interpolant to $f(x) = \ln x$ at the nodes $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$. Find the smallest bound for $|f(1.2) P_2(1.2)|$.
 - (a) 3.33×10^{-4}
 - (b) 1.33×10^{-3}
 - (c) 6.67×10^{-4}
 - (d) 4.43×10^{-3}
 - (e) 3.03×10^{-4}

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 CODE02

Math 371 Major Exam I 251

September 28, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The bisection method converges to which of the zero of $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ in the interval [-1.75, 1.5]
 - (a) -1
 - (b) 2
 - (c) 1
 - (d) -2
 - (e) 0

- 2. The bound of number of iterations using bisection method needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4] is
 - (a) $n \ge 5$
 - (b) $n \ge 10$
 - (c) $n \ge 15$
 - (d) $n \ge 3$
 - (e) $n \ge 12$

3. Use the composite Trapezoidal rule with n=4 equal subintervals to approximate

$$\int_{-2}^{2} x^3 e^x \, dx$$

Which of the following is the resulting approximation?

- (a) 11.2018
- (b) 31.3653
- (c) 22.4771
- (d) 14.5068
- (e) 19.9207

- 4. Using the secant method, find p_3 for $f(x) = x^2 6$ with initial guesses $p_0 = 3$ and $p_1 = 2$.
 - (a) $p_3 = 2.55456$
 - (b) $p_3 = 2.35344$
 - (c) $p_3 = 2.3$
 - (d) $p_3 = 2.45454$
 - (e) $p_3 = 2.4$

5. Using the fixed-point iteration $x_{n+1} = g(x_n)$ to compute $\alpha = \sqrt[3]{21}$, which of the following functions does **not** converge to α for any initial guess $x_0 \in [2, 3]$? Assume each g is well-defined and differentiable on [2, 3].

(a)
$$g(x) = \frac{20}{21}x + \frac{1}{x^2}$$

(b)
$$g(x) = x - \frac{x^3 - 21}{3x^2}$$

(c)
$$g(x) = \frac{\sqrt{21}}{x^{1/2}}$$

(d)
$$g(x) = \frac{x^3 - x^4}{x^2 - 21}$$

(e)
$$g(x) = x - \frac{x^3 - 21}{30}$$

- 6. Let $P_2(x)$ be the quadratic Lagrange interpolant to $f(x) = \ln x$ at the nodes $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$. Find the smallest bound for $|f(1.2) P_2(1.2)|$.
 - (a) 6.67×10^{-4}
 - (b) 3.33×10^{-4}
 - (c) 1.33×10^{-3}
 - (d) 4.43×10^{-3}
 - (e) 3.03×10^{-4}

- 7. Let f(0.5) = 0.4794, f(0.6) = 0.5646, f(0.7) = 0.6442. Using the most accurate 3-point formulas, the sum f'(0.5) + f'(0.6) is equal to
 - (a) 0.7860
 - (b) 0.8420
 - (c) 1.7040
 - (d) 0.8800
 - (e) 1.6480

- 8. Suppose p^* is used to approximate the number 5, with relative error at most 10^{-3} . Find the largest interval in which p^* must lie.
 - (a) [4.999, 5.001]
 - (b) [4.995, 5.005]
 - (c) [-5.005, -4.995]
 - (d) [4.95, 5.05]
 - $(e) \ [4.990, 5.010]$

9. If the Natural cubic spline

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0 x + c_0 x^2 + d_0 x^3 & \text{if } x \in [0, 1] \\ S_1(x) = a_1 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3 & \text{if } x \in [1, 2] \end{cases}$$

interpolate the data (0,0), (1,1), (2,2), then $a_0 + b_0 + a_1b_1 + 2c_0c_1 + d_1 =$

- (a) 1
- (b) 3
- (c) 4
- (d) 0
- (e) 2

10. Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

Use three-digit rounding arithmetic to compute f(0.1)

- (a) 2.25
- (b) 2.003
- (c) 2.15
- (d) 2.03
- (e) 2.05

11. The minimum value of n required to approximate the integral

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} using composite Simpson's rule is

- (a) 4
- (b) 6
- (c) 5
- (d) 3
- (e) 2

- 12. Let $P_2(x)$ be the second Taylor polynomial of $f(x) = e^x \cos x$ about $x_0 = 0$. Then the least upper bound for $|f(x) P_2(x)|$ in the interval [0, 1] is
 - (a) 1.360
 - (b) 1.252
 - (c) 1.821
 - (d) 1.485
 - (e) 1.036

13. Consider the following table of data

	x	0.2	0.4	0.6	0.8	1.0
Ì	f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

Using a step size h = 0.2, $f''(0.6) \approx$

- (a) -0.3731
- (b) -1.4924
- (c) -5.9696
- (d) 1.4924
- (e) -1.4652

14. Using Newton's method with initial guess $p_0 = 1.5$ to approximate a root of $f(x) = x^2 - 4x + 4 - \ln x$ accurate to within 10^{-3}

- (a) 1.7090412323
- (b) 1.4067209351
- (c) 1.4123911717
- (d) 1.2383198213
- (e) 1.4506567213

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03 CODE03

Math 371 Major Exam I 251

September 28, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The bound of number of iterations using bisection method needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1, 4] is
 - (a) $n \ge 5$
 - (b) $n \ge 12$
 - (c) $n \ge 15$
 - (d) $n \ge 10$
 - (e) $n \ge 3$

2. Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

Use three-digit rounding arithmetic to compute f(0.1)

- (a) 2.25
- (b) 2.15
- (c) 2.003
- (d) 2.05
- (e) 2.03

3. If the Natural cubic spline

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0 x + c_0 x^2 + d_0 x^3 & \text{if } x \in [0, 1] \\ S_1(x) = a_1 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3 & \text{if } x \in [1, 2] \end{cases}$$

interpolate the data (0,0), (1,1), (2,2), then $a_0 + b_0 + a_1b_1 + 2c_0c_1 + d_1 =$

- (a) 4
- (b) 3
- (c) 2
- (d) 1
- (e) 0

- 4. Using Newton's method with initial guess $p_0 = 1.5$ to approximate a root of $f(x) = x^2 4x + 4 \ln x$ accurate to within 10^{-3}
 - (a) 1.2383198213
 - (b) 1.4506567213
 - (c) 1.7090412323
 - (d) 1.4123911717
 - (e) 1.4067209351

- 5. Let f(0.5) = 0.4794, f(0.6) = 0.5646, f(0.7) = 0.6442. Using the most accurate 3-point formulas, the sum f'(0.5) + f'(0.6) is equal to
 - (a) 0.8420
 - (b) 0.8800
 - (c) 0.7860
 - (d) 1.7040
 - (e) 1.6480

- 6. Let $P_2(x)$ be the quadratic Lagrange interpolant to $f(x) = \ln x$ at the nodes $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$. Find the smallest bound for $|f(1.2) P_2(1.2)|$.
 - (a) 3.03×10^{-4}
 - (b) 4.43×10^{-3}
 - (c) 6.67×10^{-4}
 - (d) 3.33×10^{-4}
 - (e) 1.33×10^{-3}

- 7. Suppose p^* is used to approximate the number 5, with relative error at most 10^{-3} . Find the largest interval in which p^* must lie.
 - (a) [-5.005, -4.995]
 - (b) [4.990, 5.010]
 - (c) [4.999, 5.001]
 - (d) [4.995, 5.005]
 - (e) [4.95, 5.05]

- 8. Using the secant method, find p_3 for $f(x) = x^2 6$ with initial guesses $p_0 = 3$ and $p_1 = 2$.
 - (a) $p_3 = 2.45454$
 - (b) $p_3 = 2.3$
 - (c) $p_3 = 2.4$
 - (d) $p_3 = 2.35344$
 - (e) $p_3 = 2.55456$

9. Consider the following table of data

	x	0.2	0.4	0.6	0.8	1.0
Ì	f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

Using a step size h = 0.2, $f''(0.6) \approx$

- (a) 1.4924
- (b) -0.3731
- (c) -1.4924
- (d) -1.4652
- (e) -5.9696

10. The bisection method converges to which of the zero of $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ in the interval [-1.75, 1.5]

- (a) -1
- (b) 1
- (c) 2
- (d) 0
- (e) -2

11. Using the fixed-point iteration $x_{n+1} = g(x_n)$ to compute $\alpha = \sqrt[3]{21}$, which of the following functions does **not** converge to α for any initial guess $x_0 \in [2, 3]$? Assume each g is well-defined and differentiable on [2, 3].

(a)
$$g(x) = x - \frac{x^3 - 21}{3x^2}$$

(b)
$$g(x) = \frac{x^3 - x^4}{x^2 - 21}$$

(c)
$$g(x) = \frac{\sqrt{21}}{x^{1/2}}$$

(d)
$$g(x) = x - \frac{x^3 - 21}{30}$$

(e)
$$g(x) = \frac{20}{21}x + \frac{1}{x^2}$$

12. Use the composite Trapezoidal rule with n=4 equal subintervals to approximate

$$\int_{-2}^{2} x^3 e^x \, dx$$

Which of the following is the resulting approximation?

- (a) 14.5068
- (b) 31.3653
- (c) 11.2018
- (d) 22.4771
- (e) 19.9207

- 13. Let $P_2(x)$ be the second Taylor polynomial of $f(x) = e^x \cos x$ about $x_0 = 0$. Then the least upper bound for $|f(x) P_2(x)|$ in the interval [0, 1] is
 - (a) 1.036
 - (b) 1.360
 - (c) 1.821
 - (d) 1.485
 - (e) 1.252

14. The minimum value of n required to approximate the integral

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} using composite Simpson's rule is

- (a) 5
- (b) 2
- (c) 6
- (d) 3
- (e) 4

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 371 Major Exam I 251

September 28, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. Let $P_2(x)$ be the second Taylor polynomial of $f(x) = e^x \cos x$ about $x_0 = 0$. Then the least upper bound for $|f(x) P_2(x)|$ in the interval [0, 1] is
 - (a) 1.036
 - (b) 1.360
 - (c) 1.821
 - (d) 1.252
 - (e) 1.485

2. The minimum value of n required to approximate the integral

$$\int_0^2 \frac{1}{x+4} dx$$

to within 10^{-5} using composite Simpson's rule is

- (a) 5
- (b) 6
- (c) 2
- (d) 3
- (e) 4

- 3. Suppose p^* is used to approximate the number 5, with relative error at most 10^{-3} . Find the largest interval in which p^* must lie.
 - (a) [4.995, 5.005]
 - (b) [4.990, 5.010]
 - (c) [-5.005, -4.995]
 - (d) [4.999, 5.001]
 - (e) [4.95, 5.05]

- 4. Using Newton's method with initial guess $p_0 = 1.5$ to approximate a root of $f(x) = x^2 4x + 4 \ln x$ accurate to within 10^{-3}
 - (a) 1.4067209351
 - (b) 1.2383198213
 - (c) 1.4123911717
 - (d) 1.4506567213
 - (e) 1.7090412323

- 5. Let $P_2(x)$ be the quadratic Lagrange interpolant to $f(x) = \ln x$ at the nodes $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$. Find the smallest bound for $|f(1.2) P_2(1.2)|$.
 - (a) 1.33×10^{-3}
 - (b) 3.33×10^{-4}
 - (c) 4.43×10^{-3}
 - (d) 6.67×10^{-4}
 - (e) 3.03×10^{-4}

6. Consider the following table of data

x	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

Using a step size h = 0.2, $f''(0.6) \approx$

- (a) 1.4924
- (b) -1.4652
- (c) -1.4924
- (d) -5.9696
- (e) -0.3731

7. If the Natural cubic spline

$$S(x) = \begin{cases} S_0(x) = a_0 + b_0 x + c_0 x^2 + d_0 x^3 & \text{if } x \in [0, 1] \\ S_1(x) = a_1 + b_1 (x - 1) + c_1 (x - 1)^2 + d_1 (x - 1)^3 & \text{if } x \in [1, 2] \end{cases}$$

interpolate the data (0,0), (1,1), (2,2), then $a_0 + b_0 + a_1b_1 + 2c_0c_1 + d_1 =$

- (a) 2
- (b) 0
- (c) 3
- (d) 4
- (e) 1

8. Use the composite Trapezoidal rule with n=4 equal subintervals to approximate

$$\int_{-2}^{2} x^3 e^x \, dx$$

Which of the following is the resulting approximation?

- (a) 22.4771
- (b) 19.9207
- (c) 14.5068
- (d) 31.3653
- (e) 11.2018

- 9. Using the secant method, find p_3 for $f(x) = x^2 6$ with initial guesses $p_0 = 3$ and $p_1 = 2$.
 - (a) $p_3 = 2.45454$
 - (b) $p_3 = 2.35344$
 - (c) $p_3 = 2.3$
 - (d) $p_3 = 2.55456$
 - (e) $p_3 = 2.4$

- 10. Using the fixed-point iteration $x_{n+1} = g(x_n)$ to compute $\alpha = \sqrt[3]{21}$, which of the following functions does **not** converge to α for any initial guess $x_0 \in [2, 3]$? Assume each g is well-defined and differentiable on [2, 3].
 - (a) $g(x) = \frac{20}{21}x + \frac{1}{x^2}$
 - (b) $g(x) = \frac{\sqrt{21}}{x^{1/2}}$
 - (c) $g(x) = \frac{x^3 x^4}{x^2 21}$
 - (d) $g(x) = x \frac{x^3 21}{30}$
 - (e) $g(x) = x \frac{x^3 21}{3x^2}$

- 11. Let f(0.5) = 0.4794, f(0.6) = 0.5646, f(0.7) = 0.6442. Using the most accurate 3-point formulas, the sum f'(0.5) + f'(0.6) is equal to
 - (a) 0.8420
 - (b) 1.6480
 - (c) 0.8800
 - (d) 1.7040
 - (e) 0.7860

- 12. The bound of number of iterations using bisection method needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x 4 = 0$ lying in the interval [1,4] is
 - (a) $n \ge 15$
 - (b) $n \ge 10$
 - (c) $n \ge 12$
 - (d) $n \ge 3$
 - (e) $n \ge 5$

13. Let

$$f(x) = \frac{e^x - e^{-x}}{x}$$

Use three-digit rounding arithmetic to compute f(0.1)

- (a) 2.15
- (b) 2.25
- (c) 2.05
- (d) 2.03
- (e) 2.003

14. The bisection method converges to which of the zero of $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$ in the interval [-1.75, 1.5]

- (a) 1
- (b) 2
- (c) -2
- (d) -1
- (e) 0

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	С 9	A 4	Вз	D 1
2	A	A 11	Е 3	D 2	В 13
3	A	В 2	В 12	С 9	A 14
4	A	D 12	D 7	D 6	С 6
5	A	C_{13}	D 5	D 10	D 8
6	A	D 14	A 8	C 8	С 11
7	A	D 6	C 10	D 14	A 9
8	A	В 4	В 14	A 7	D 12
9	A	E 5	E 9	C 11	A 7
10	A	C_{1}	E 2	A 4	C 5
11	A	C 7	В 13	В 5	D 10
12	A	D 10	В 1	В 12	Сз
13	A	Вз	В 11	E 1	C 2
14	A	C 8	С 6	C 13	D 4

Answer Counts

V	A	В	С	D	Е
1	1	3	5	4	1
2	2	5	2	2	3
3	2	3	4	4	1
4	3	1	5	5	0