King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371 Major Exam II 251 November 9, 2025

EXAM COVER

Number of versions: 8 Number of questions: 14

King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

MASTER VERSION

1. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$ _____(correct)

(b)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(c)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(d)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

2. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.267390 _____(correct)
- (b) 0.714785
- (c) 0.506500
- (d) 0.419500
- (e) 0.801250

3. Consider the initial value problem

$$y' = te^{3t} - 2y,$$

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0891 _____ $_(correct)$
- (b) 0.0972
- (c) 0.0792
- (d) 0.0642
- (e) 0.0312

4. Consider the initial value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$, $h = 0.1$.

$$0 < t < 2$$
.

$$y(0) = 0.5$$

$$h = 0.1$$

If the fourth-order Runge-Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 0.8292983 (correct)
- (b) 1.2140869
- (c) 1.0150701
- (d) 1.2056345
- (e) 0.6574145

5. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.875 _____(correct)
- (b) 3.5
- (c) 4.000
- (d) 3.625
- (e) 3.750

6. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) No row interchanges required in stages 1 and 2 _____(correct)
- (b) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (d) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (e) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

7. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \qquad \text{find the permutation matrix P such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 _____(correct)

- (b) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $(d) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
- (e) $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

8. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$ _____(correct)
- (b) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (d) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- (e) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$

9. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 1 _____(correct)
- (b) 2
- (c) 1/2
- (d) 0
- (e) 3/2

10. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 4 _____(correct)
- (b) 12
- (c) 2
- (d) 1
- (e) 11

11. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.3 _____(correct)
- (b) 0.4
- (c) 0.2
- (d) 0.5
- (e) 0.1

12. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 3 _____(correct)
- (b) 2
- (c) 1
- (d) 4
- (e) 5

13. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^\mathsf{T}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.31 _____(correct)
- (b) 0.06
- (c) 0.12
- (d) 0.21
- (e) 0.14

14. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$ _____(correct)
- (b) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (c) $(0.9000000000, 0.7000000000, 0.6000000000)^t$
- (d) $(1.2500000000, -1.3333333333, 0.2000000000)^{t}$
- (e) $(1.4000000000, -0.9000000000, 0.0000000000)^t$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01 CODE01

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.2
- (b) 0.5
- (c) 0.1
- (d) 0.4
- (e) 0.3

2. Consider the initial value problem

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t=1 is

- (a) 0.0642
- (b) 0.0312
- (c) 0.0792
- (d) 0.0972
- (e) 0.0891

3. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (b) No row interchanges required in stages 1 and 2
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (d) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges

4. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(b)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(c)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(d)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

5. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 2
- (b) 4
- (c) 1
- (d) 3
- (e) 5

6. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(0.9000000000, 0.7000000000, 0.6000000000)^t$
- (b) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (c) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (d) $(1.4000000000, -0.9000000000, 0.0000000000)^{t}$
- (e) $(1.2500000000, -1.3333333333, 0.2000000000)^{t}$

7. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.506500
- (b) 0.419500
- (c) 0.801250
- (d) 0.267390
- (e) 0.714785

8. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 2
- (b) 12
- (c) 4
- (d) 11
- (e) 1

9. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^{\mathsf{T}}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.12
- (b) 0.14
- (c) 0.31
- (d) 0.21
- (e) 0.06

10. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- (b) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (d) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (e) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$

11. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.750
- (b) 3.625
- (c) 4.000
- (d) 3.875
- (e) 3.5

12. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

- (b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
- $\begin{array}{cccc}
 (c) & \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
 \end{array}$
- $(d) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
- (e) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

13. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 0.8292983
- (b) 0.6574145
- (c) 1.2140869
- (d) 1.0150701
- (e) 1.2056345

14. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 3/2
- (b) 0
- (c) 1/2
- (d) 2
- (e) 1

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02 CODE02

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.5
- (b) 3.875
- (c) 3.750
- (d) 3.625
- (e) 4.000

2. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 0.8292983
- (b) 1.2056345
- (c) 0.6574145
- (d) 1.2140869
- (e) 1.0150701

3. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(b)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(c)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(d)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(e)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

4. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.801250
- (b) 0.714785
- (c) 0.419500
- (d) 0.267390
- (e) 0.506500

5. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^{\mathsf{T}}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.21
- (b) 0.06
- (c) 0.12
- (d) 0.31
- (e) 0.14

6. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 4
- (b) 1
- (c) 5
- (d) 2
- (e) 3

7. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

(b)
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{cccc}
(c) & \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
\end{array}$$

(e)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

8. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0,0,0)^t$, is $\mathbf{x}^{(1)} =$

- (a) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (b) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (c) $(0.9000000000, 0.7000000000, 0.6000000000)^t$
- (d) $(1.4000000000, -0.9000000000, 0.0000000000)^t$
- (e) $(1.2500000000, -1.3333333333, 0.2000000000)^{t}$

9. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 4
- (b) 11
- (c) 1
- (d) 2
- (e) 12

10. Consider the initial value problem

$$y' = te^{3t} - 2y,$$

$$0 \le t \le 1$$
,

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0891
- (b) 0.0972
- (c) 0.0312
- (d) 0.0792
- (e) 0.0642

11. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (b) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (d) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$

12. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (b) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (d) No row interchanges required in stages 1 and 2
- (e) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

13. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.1
- (b) 0.3
- (c) 0.4
- (d) 0.5
- (e) 0.2

14. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 1/2
- (b) 1
- (c) 3/2
- (d) 0
- (e) 2

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03 CODE03

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.2500000000, -1.3333333333, 0.2000000000)^t$
- (b) $(1.49583333333, -0.85694444444, -0.05555555556)^{t}$
- (c) $(0.9000000000, 0.7000000000, 0.6000000000)^t$
- (d) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (e) $(1.4000000000, -0.9000000000, 0.0000000000)^t$

2. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

3. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 1
- (b) 2
- (c) 12
- (d) 4
- (e) 11

4. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.625
- (b) 3.750
- (c) 4.000
- (d) 3.875
- (e) 3.5

5. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 1.2056345
- (b) 0.6574145
- (c) 1.2140869
- (d) 0.8292983
- (e) 1.0150701

6. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.267390
- (b) 0.419500
- (c) 0.801250
- (d) 0.506500
- (e) 0.714785

7. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$ (b) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (d) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) No row interchanges required in stages 1 and 2

8. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^\mathsf{T}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then
$$\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$$

- (a) 0.14
- (b) 0.31
- (c) 0.06
- (d) 0.12
- (e) 0.21

9. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (b) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- (c) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- $(d) \|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$

10. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 2
- (b) 1
- (c) 5
- (d) 4
- (e) 3

11. Consider the initial value problem

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t=1 is

- (a) 0.0312
- (b) 0.0891
- (c) 0.0792
- (d) 0.0642
- (e) 0.0972

12. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(b)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(c)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(d)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

13. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 1
- (b) 0
- (c) 3/2
- (d) 2
- (e) 1/2

14. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.2
- (b) 0.5
- (c) 0.4
- (d) 0.1
- (e) 0.3

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04 CODE04

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name					
ID		Sec			

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 1
- (b) 3
- (c) 5
- (d) 2
- (e) 4

2. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 2
- (b) 3/2
- (c) 1/2
- (d) 1
- (e) 0

3. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (b) No row interchanges required in stages 1 and 2
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (d) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

4. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(b)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(c)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y)| -1 \le t \le 1, -1 \le y \le 1\}$

(d)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(e)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

5. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 1
- (b) 2
- (c) 12
- (d) 11
- (e) 4

6. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of x is correct?

- (a) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (b) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- $(d) \|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$

7. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^{\mathsf{T}}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.31
- (b) 0.14
- (c) 0.21
- (d) 0.06
- (e) 0.12

8. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.1
- (b) 0.4
- (c) 0.2
- (d) 0.5
- (e) 0.3

9. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.750
- (b) 3.625
- (c) 3.5
- (d) 4.000
- (e) 3.875

10. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 1.2140869
- (b) 1.0150701
- (c) 0.8292983
- (d) 1.2056345
- (e) 0.6574145

11. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (b) $(1.25000000000, -1.3333333333, 0.20000000000)^{t}$
- (c) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (d) $(0.9000000000, 0.7000000000, 0.6000000000)^t$
- (e) $(1.4000000000, -0.9000000000, 0.0000000000)^t$

12. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

13. Consider the initial value problem

$$y' = te^{3t} - 2y,$$

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0891
- (b) 0.0312
- (c) 0.0642
- (d) 0.0972
- (e) 0.0792

14. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.714785
- (b) 0.419500
- (c) 0.506500
- (d) 0.801250
- (e) 0.267390

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE05 CODE05

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.267390
- (b) 0.714785
- (c) 0.801250
- (d) 0.506500
- (e) 0.419500

2. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) No row interchanges required in stages 1 and 2
- (b) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (d) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

3. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (b) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- $(d) \|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$

4. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.750
- (b) 4.000
- (c) 3.875
- (d) 3.5
- (e) 3.625

5. Consider the initial value problem

$$y' = te^{3t} - 2y,$$

$$0 \le t \le 1$$

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0891
- (b) 0.0972
- (c) 0.0792
- (d) 0.0642
- (e) 0.0312

6. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^\mathsf{T}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.21
- (b) 0.12
- (c) 0.06
- (d) 0.31
- (e) 0.14

7. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{\mathsf{t}}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (b) $(1.2500000000, -1.3333333333, 0.2000000000)^{t}$
- (c) $(0.9000000000, 0.7000000000, 0.6000000000)^{t}$
- (d) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (e) $(1.4000000000, -0.9000000000, 0.0000000000)^{t}$

8. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(b)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(a)
$$f(t,y) = (t+1)y$$
 on $D = \{(t,y) | t-1 \le t \le 1, t-1 \le y \le 1\}$
(b) $f(t,y) = y \ln y + t$ on $D = \{(t,y) | t-1 \le t \le 1, t-1 \le y \le 1\}$
(c) $f(t,y) = ye^{y^2} + t^3$ on $D = \{(t,y) | t-1 \le t \le 1, t-1 \le y \le 1\}$

(d)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$
(e) $f(t,y) = e^t \sin y$ on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(e)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

9. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 0
- (b) 3/2
- (c) 1/2
- (d) 2
- (e) 1

10. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 12
- (b) 1
- (c) 4
- (d) 2
- (e) 11

11. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.2
- (b) 0.1
- (c) 0.4
- (d) 0.3
- (e) 0.5

12. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 4
- (b) 3
- (c) 5
- (d) 1
- (e) 2

13. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

- (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $\begin{array}{cccc}
 (c) & \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
 \end{array}$
- $(d) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
- (e) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

14. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 1.0150701
- (b) 1.2056345
- (c) 0.6574145
- (d) 0.8292983
- (e) 1.2140869

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE06 CODE06

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the initial value problem

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

$$y(0) = 0, \qquad h =$$

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0972
- (b) 0.0642
- (c) 0.0312
- (d) 0.0891
- (e) 0.0792

2. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.2
- (b) 0.4
- (c) 0.1
- (d) 0.5
- (e) 0.3

3. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (b) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (d) No row interchanges required in stages 1 and 2
- (e) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

4. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 0
- (b) 3/2
- (c) 1/2
- (d) 2
- (e) 1

5. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 4
- (b) 2
- (c) 5
- (d) 3
- (e) 1

6. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.801250
- (b) 0.506500
- (c) 0.419500
- (d) 0.267390
- (e) 0.714785

7. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^{\mathsf{T}}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.12
- (b) 0.31
- (c) 0.14
- (d) 0.21
- (e) 0.06

8. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (b) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (c) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- $(d) \|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$

9. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(b)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(c)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(d)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

10. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 4
- (b) 12
- (c) 1
- (d) 2
- (e) 11

11. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.5
- (b) 3.875
- (c) 3.625
- (d) 4.000
- (e) 3.750

12. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

- (b) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
- $(c) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
- $(d) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- (e) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

13. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.4000000000, -0.9000000000, 0.00000000000)^t$
- (b) $(1.25000000000, -1.3333333333, 0.20000000000)^{t}$
- (c) $(0.9000000000, 0.7000000000, 0.6000000000)^{t}$
- (d) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (e) $(1.250000000, -0.9166666667, 0.06666666667)^{t}$

14. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 1.2056345
- (b) 0.6574145
- (c) 1.0150701
- (d) 0.8292983
- (e) 1.2140869

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE07 CODE07

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 3/2
- (b) 1
- (c) 1/2
- (d) 0
- (e) 2

2. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 3.875
- (b) 3.750
- (c) 3.5
- (d) 3.625
- (e) 4.000

3. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 0.6574145
- (b) 1.0150701
- (c) 1.2140869
- (d) 1.2056345
- (e) 0.8292983

4. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(b)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(c)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(d)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

5. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 1
- (b) 12
- (c) 2
- (d) 4
- (e) 11

6. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of x is correct?

- (a) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- (b) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (d) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$

7. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

- (b) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
- $(d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- (e) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

8. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.506500
- (b) 0.714785
- (c) 0.267390
- (d) 0.801250
- (e) 0.419500

9. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (b) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (d) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) No row interchanges required in stages 1 and 2

10. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.3
- (b) 0.1
- (c) 0.2
- (d) 0.5
- (e) 0.4

11. Consider the initial value problem

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

$$y(0) = 0,$$

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t = 1 is

- (a) 0.0972
- (b) 0.0312
- (c) 0.0642
- (d) 0.0792
- (e) 0.0891

12. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 1
- (b) 2
- (c) 3
- (d) 5
- (e) 4

13. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$, is $\mathbf{x}^{(1)} =$

- (a) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (b) $(0.9000000000, 0.7000000000, 0.6000000000)^{t}$
- (c) $(1.4000000000, -0.9000000000, 0.0000000000)^t$
- (d) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$
- (e) $(1.2500000000, -1.3333333333, 0.2000000000)^{t}$

14. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^\mathsf{T}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.21
- (b) 0.06
- (c) 0.14
- (d) 0.12
- (e) 0.31

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE08 CODE08

Math 371 Major Exam II 251

November 9, 2025 Net Time Allowed: 90 Minutes

Name		
ID	Sec	

Check that this exam has 14 questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Use the LU Factorization Algorithm to factor

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}}_{U}.$$

Compute $\ell_{32} + u_{33}$.

- (a) 1
- (b) 2
- (c) 0
- (d) 1/2
- (e) 3/2

2. Consider the initial value problem

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5,$ $h = 0.1.$

If the fourth–order Runge–Kutta method is used to approximate the solution, then $y(0.2) \approx$

- (a) 0.8292983
- (b) 1.2140869
- (c) 1.0150701
- (d) 1.2056345
- (e) 0.6574145

3. Consider the initial value problem

$$y' = te^{3t} - 2y$$
, $0 \le t \le 1$, $y(0) = 0$, $h = 0.5$,

with exact solution

$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}.$$

If the midpoint method is used to approximate the solution, then the absolute error at t=1 is

- (a) 0.0642
- (b) 0.0972
- (c) 0.0792
- (d) 0.0891
- (e) 0.0312

4. Which one of the following functions does not satisfy a Lipschitz condition on the domain D

(a)
$$f(t,y) = y \ln y + t$$
 on $D = \{(t,y) | 0 \le t \le 1, 0 \le y \le 1\}$

(b)
$$f(t,y) = \frac{y}{1+t^2}$$
 on $D = \{(t,y) | 0 \le t \le 3, -2 \le y \le 2\}$

(c)
$$f(t,y) = (t^2 + 1)y^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

(d)
$$f(t,y) = e^t \sin y$$
 on $D = \{(t,y) | 0 \le t \le 2, -\pi \le y \le \pi\}$

(e)
$$f(t,y) = ye^{y^2} + t^3$$
 on $D = \{(t,y) | -1 \le t \le 1, -1 \le y \le 1\}$

5. Find the $||A||_{\infty}$ of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- (a) 12
- (b) 1
- (c) 11
- (d) 4
- (e) 2

6. Consider the linear system

$$-6x_1 - 12x_2 - x_3 = -9,$$

$$2x_1 + x_2 - x_3 = 8,$$

$$5x_1 + 12x_2 + x_3 = 7.$$

Let $R_i^{(k)}$ denote the *i*-th row of the augmented matrix at stage k of Gaussian elimination and let $R_i^{(k)} \leftrightarrow R_j^{(k)}$ denote an interchange of the *i*-th and *j*-th rows. The row interchanges required to solve the system by partial pivoting are

- (a) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: No row interchanges
- (b) Stage 1: $R_1^{(1)} \leftrightarrow R_3^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (c) No row interchanges required in stages 1 and 2
- (d) Stage 1: No row interchanges, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$
- (e) Stage 1: $R_1^{(1)} \leftrightarrow R_2^{(1)}$, Stage 2: $R_2^{(2)} \leftrightarrow R_3^{(2)}$

7. Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iterates, respectively, of the Jacobi method with $\mathbf{x}^{(0)} = (1, 0, -1)^{\mathsf{T}}$ for the system

$$\begin{cases} 10x_1 - x_2 = 9, \\ -x_1 + 10x_2 - 2x_3 = 7, \\ -2x_2 + 10x_3 = 6. \end{cases}$$

Then $\|\mathbf{x}^{(2)} - \mathbf{x}^{(1)}\|_{\infty} =$

- (a) 0.14
- (b) 0.12
- (c) 0.31
- (d) 0.21
- (e) 0.06

8. If

$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}, \quad \text{find the permutation matrix } P \text{ such that} \quad PA = \begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}.$$

The matrix P is

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

9. Let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find the spectral radius $\rho(A)$.

- (a) 3
- (b) 1
- (c) 5
- (d) 4
- (e) 2

10. Consider the initial value problem

$$y' = \frac{1}{2}y + t$$
, $0 \le t \le 1$, $h = 0.2$, $y(0) = 1$,

with exact solution $y(t) = 5e^{t/2} - 2t - 4$. If Euler's method is used to approximate the solution, then the least bound for $|y(1) - w_5|$ is

- (a) 0.267390
- (b) 0.714785
- (c) 0.801250
- (d) 0.506500
- (e) 0.419500

11. Use the Gaussian Elimination Algorithm (exact arithmetic, no rounding) to solve

$$\begin{cases} x_1 - x_2 + 3x_3 = 2, \\ 3x_1 - 3x_2 + x_3 = -1, \\ x_1 + x_2 = 3. \end{cases}$$

Then, $x_1 + x_2 + x_3 =$.

- (a) 4.000
- (b) 3.750
- (c) 3.5
- (d) 3.875
- (e) 3.625

12. For the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

an approximate solution is $\tilde{\mathbf{x}} = \begin{bmatrix} -0.2 \\ -7.5 \\ 5.4 \end{bmatrix}$. Compute $||A\tilde{\mathbf{x}} - \mathbf{b}||_{\infty}$.

- (a) 0.5
- (b) 0.2
- (c) 0.1
- (d) 0.4
- (e) 0.3

13. Let

$$\mathbf{x} = \begin{pmatrix} 3 \\ -4 \\ 0 \\ \frac{3}{2} \end{pmatrix} \in \mathbb{R}^4.$$

Which statement about the norms of \mathbf{x} is correct?

- (a) $\|\mathbf{x}\|_2 \|\mathbf{x}\|_{\infty} > 9$
- (b) $\|\mathbf{x}\|_2 > \|\mathbf{x}\|_{\infty}$
- (c) $\|\mathbf{x}\|_2 + \|\mathbf{x}\|_{\infty} < 9$
- $(d) \|\mathbf{x}\|_2 = \|\mathbf{x}\|_{\infty}$
- (e) $\|\mathbf{x}\|_2 < \|\mathbf{x}\|_{\infty}$

14. Consider the system

$$\begin{cases} 4x_1 + x_2 - x_3 = 5, \\ -x_1 + 3x_2 + x_3 = -4, \\ 2x_1 + 2x_2 + 5x_3 = 1. \end{cases}$$

The first iterate of the Gauss-Seidel method in solving the system with initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^{t}$, is $\mathbf{x}^{(1)} =$

- (a) $(1.2500000000, -1.3333333333, 0.2000000000)^t$
- (b) $(1.4958333333, -0.8569444444, -0.0555555556)^{t}$
- (c) $(1.4000000000, -0.9000000000, 0.0000000000)^{t}$
- (d) $(0.9000000000, 0.7000000000, 0.6000000000)^{t}$
- (e) $(1.250000000, -0.9166666667, 0.0666666667)^{t}$

Q	MASTER	CODE01	CODE02	CODE03	CODE04	CODE05	CODE06	CODE07
1	A	Е 11	В 5	D 14	В 12	A 2	D 3	В 9
2	A	Е 3	A 4	E ,	D 9	A 6	E 11	A 5
3	A	В 6	E ,	D 10	В 6	C 8	D 6	E 4
4	A	A 1	D 2	D 5	D 1	C 5	Е 9	C 1
5	A	D 12	D 13	D 4	E 10	A 3	D 12	D 10
6	A	C 14	E 12	A 2	D 8	D 13	D 2	В 8
7	A	D 2	A 7	E 6	A 13	D 14	В 13	В 7
8	A	C 10	В 14	В 13	E 11	В 1	D 8	C 2
9	A	C ₁₃	A 10	D 8	E 5	E ,	D 1	E 6
10	A	C 8	А 3	E 12	C 4	C 10	A 10	A 11
11	A	D 5	В 8	Вз	A 14	D 11	В 5	Е 3
12	A	D 7	D 6	D 1	С 7	В 12	В 7	C 12
13	A	A 4	В 11	A 9	А 3	D 7	E 14	D 14
14	A	E 9	В 9	E 11	E 2	D 4	D 4	E 13

Q	MASTER	CODE08
1	A	A 9
2	A	A 4
3	A	D 3
4	A	A 1
5	A	D 10
6	A	С 6
7	A	C ₁₃
8	A	E 7
9	A	A 12
10	A	A_{2}
11	A	D_{5}
12	A	E 11
13	A	В 8
14	A	E 14

Answer Counts

V	A	В	С	D	Е
1	2	1	4	4	3
2	4	5	0	3	2
3	2	2	0	6	4
4	3	2	2	3	4
5	3	2	3	5	1
6	1	3	0	7	3
7	2	3	3	2	4
8	5	1	2	3	3