King Fahd University of Petroleum and Minerals Department of Mathematics

Math 371
Major Exam I
251
Sep 28, 2025

Net Time Allowed: 90 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

- 1. Let $P_2(x)$ be the second Taylor polynomial about 0 for $f(x) = \ln(1+x)$. Give an upper bound for the error $|f(0.3) P_2(0.3)|$ from Taylor's remainder.
 - (a) 0.00900
 - (b) 0.00750
 - (c) 0.01050
 - (d) 0.00450
 - (e) 0.01200

2. Using three-digit chopping arithmetic, compute

$$-9\pi + 4e - \frac{5}{128}.$$

- (a) -17.4
- (b) -17.3
- (c) -17.2
- (d) -17.5
- (e) -17.0

- 3. Suppose p^* approximates π with relative error at most 2×10^{-3} . The largest interval in which p^* must lie is
 - (a) [3.13531, 3.14788]
 - (b) [3.12000, 3.16000]
 - (c) (3.10000, 3.18000)
 - (d) (3.11000, 3.15000)
 - (e) (3.00000, 3.20000)

- 4. Apply the Bisection method to $f(x) = x^3 2$ on [1, 2]. After the first three approximations p_1, p_2, p_3 , the sum $p_1 + p_2 + p_3$ equals
 - (a) 4.125
 - (b) 3.750
 - (c) 4.000
 - (d) 3.625
 - (e) 4.250

- 5. Using Bisection method on [0,2], the minimum number of iterations to achieve an accuracy within 10^{-4} is
 - (a) n = 15
 - (b) n = 14
 - (c) n = 12
 - (d) n = 10
 - (e) n = 8

- 6. Use fixed-point iteration with $g(x) = (2+x)^{1/3}$ and $p_0 = 1.2$ to solve $x^3 x 2 = 0$ to within 10^{-2} accuracy. The resulting approximation is
 - (a) 1.520
 - (b) 1.505
 - (c) 1.540
 - (d) 1.495
 - (e) 1.560

- 7. Consider $g(x) = 1 + \frac{1}{5}\sin x$ on [0,2]. Then $|g'(x)| \leq \frac{1}{5}$. With $p_0 = 0$, the minimum number of iterations such that $|p_n p^*| \leq 10^{-2}$ is
 - (a) n = 4
 - (b) n = 5
 - (c) n = 6
 - (d) n = 7
 - (e) n = 3

- 8. Apply Newton's method to $f(x) = x \cos x$ with $p_0 = 0.5$. After three iterations, $p_3 \approx$
 - (a) 0.73909
 - (b) 0.70711
 - (c) 0.69315
 - (d) 0.74000
 - (e) 0.73600

- 9. The Secant method for $f(x) = e^x 2$ with $p_0 = 0$ and $p_1 = 1$ gives $p_3 \approx$
 - (a) 0.67669
 - (b) 0.69315
 - (c) 0.65000
 - (d) 0.70000
 - (e) 0.66000

- 10. Let P_2 be the quadratic Lagrange interpolant of $f(x) = \ln(1+x)$ at the nodes $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1.0$. The coefficient of x^2 in $P_2(x)$ is approximately
 - (a) -0.235566
 - (b) -0.210000
 - (c) -0.180000
 - (d) -0.250000
 - (e) -0.200000

11. A natural cubic spline S on [0,2] is

$$S(x) = \begin{cases} 2 - x + x^3, & 0 \le x \le 1, \\ \alpha + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & 1 \le x \le 2. \end{cases}$$

Then b + c + d equals

- (a) 4
- (b) 0
- (c) -1
- (d) 2
- (e) -3

- 12. Using the forward-difference formula with step h = 0.02 at $x_0 = 1.6$ for $f(x) = e^{-x}$, approximate $f'(x_0)$.
 - (a) -0.199891
 - (b) -0.201897
 - (c) -0.198000
 - (d) -0.205000
 - (e) -0.196500

- 13. Using the composite Trapezoidal rule with n=4, approximate $\int_0^2 \cos(x^2) dx$.
 - (a) 0.5271
 - (b) 0.5200
 - (c) 0.5342
 - (d) 0.5300
 - (e) 0.5526

- 14. The minimum value of n so that the composite Simpson rule approximates $\int_1^2 \ln x \, dx$ within 10^{-5} accuracy is
 - (a) n = 8
 - (b) n = 10
 - (c) n = 12
 - (d) n = 6
 - (e) n = 14