King Fahd University of Petroleum and Minerals Department of Mathematics

 $\begin{array}{c} \text{Math 371} \\ \text{Final Exam} \\ 251 \\ \text{May 25} \ , 2025 \end{array}$

Net Time Allowed: 120 Minutes

MASTER VERSION

- 1. If $P_2(x)$ is the second Taylor polynomial of $f(x) = \ln(1+x)$ about x=0, then $P_2(0.7) =$
 - (a) 0.455
 - (b) 0.460
 - (c) 0.450
 - (d) 0.430
 - (e) 0.480

2. Consider the equation

$$f(x) = x - 1 - \sin x = 0.$$

Using the Bisection method on [1, 2], $p_3 =$

- (a) 1.8750
- (b) 1.7500
- (c) 1.9375
- (d) 1.8125
- (e) 1.6875

3. Consider the equation

$$f(x) = e^x - 2 = 0.$$

Starting with $p_0=0.5$, find p_1 using Newton's method and then p_2 using Secant method, $p_2=$

- (a) 0.6912
- (b) 0.6800
- (c) 0.7000
- (d) 0.7020
- (e) 0.7100

- 4. Let $P_2(x)$ be the second Lagrange interpolating polynomial for $f(x) = \ln(0.5x + 1)$ on [0,2] using the nodes $x_0 = 0$, $x_1 = 1$, $x_2 = 2$. Then $P_2(1.2) \approx$
 - (a) 0.4724
 - (b) 0.4800
 - (c) 0.4600
 - (d) 0.4900
 - (e) 0.5000

- 5. Let $f(x) = x^3 2x$. Using the most accurate three-point formula with h = 0.5 to approximate f'(1), then $f'(1) \approx$
 - (a) 1.25
 - (b) 1.00
 - (c) 0.75
 - (d) 1.50
 - (e) 0.50

6. Use the composite Simpson method with n=4 subintervals to approximate

$$\int_0^1 \frac{1}{x+3} \, dx.$$

The approximation is

- (a) 0.2877
- (b) 0.2810
- (c) 0.2950
- (d) 0.2700
- (e) 0.3050

7. Consider the initial value problem

$$y' = t + y$$
, $0 \le t \le 0.5$, $y(0) = 1$.

Using the midpoint method with step size h = 0.25, the approximation to y(0.5) is

- (a) 1.783
- (b) 1.750
- (c) 1.700
- (d) 1.800
- (e) 1.650

8. Use one iteration of the Gauss-Seidel method to solve the linear system

$$\begin{cases} 3x_1 - x_2 = 5, \\ -x_1 + 4x_2 - x_3 = 6, \\ -x_2 + 5x_3 = 5, \end{cases}$$

starting from $\mathbf{x}^{(0)} = (0, 0, 0)^t$. Then $\mathbf{x}^{(1)} \approx$

- (a) $(1.667, 1.917, 1.383)^t$
- (b) $(1.600, 1.800, 1.300)^t$
- (c) $(1.500, 2.000, 1.400)^t$
- (d) $(1.700, 1.900, 1.500)^t$
- (e) $(1.600, 2.000, 1.500)^t$

9. Suppose

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 2 & 1 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4 \\ 10 \\ 6 \end{bmatrix}.$$

Assume A = LU is the Doolittle factorization of A, and consider $Ly = \mathbf{b}$, where $y = (y_1, y_2, y_3)^t$. Then $y_1 + y_2 + y_3 =$

- (a) 8
- (b) 6
- (c) 7
- (d) 9
- (e) 5

10. Consider the matrix

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}.$$

The sum of the singular values of A is

- (a) 8
- (b) 6
- (c) 4
- (d) 10
- (e) 12

- 11. Consider the data points (0, 1.1), (1, 1.9), (3, 3.8). Let $P_1(x) = a_1x + a_0$ be the least squares polynomial of degree one that fits these data. Then $P_1(2) \approx$
 - (a) 2.871
 - (b) 2.500
 - (c) 3.100
 - (d) 2.700
 - (e) 3.300

- 12. Let $\mathbf{v}_1 = (1, 1, 0)^t$, $\mathbf{v}_2 = (1, 0, 1)^t$, and $\mathbf{v}_3 = (0, 1, 1)^t$ be linearly independent vectors in \mathbb{R}^3 . Using the Gram–Schmidt process with $u_1 = \mathbf{v}_1$ to obtain orthogonal vectors u_1, u_2, u_3 , the vector u_2 can be chosen as
 - (a) $(1, -1, 2)^t$
 - (b) $(1,1,0)^t$
 - (c) $(1,0,1)^t$
 - (d) $(0,1,1)^t$
 - (e) $(2,0,1)^t$

13. Which of the following matrices is orthogonal?

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad C = \frac{1}{2} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}.$$

- (a) A only
- (b) B only
- (c) C only
- (d) A and C
- (e) B and C

14. Consider the system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

and initial guess $\mathbf{x}^{(0)} = (0,0)^t$. Using the Conjugate Gradient method with two-digit rounding arithmetic, the first iterate $\mathbf{x}^{(1)}$ is

- (a) $(0.25, 0.50)^t$
- (b) $(0.20, 0.40)^t$
- (c) $(0.30, 0.60)^t$
- (d) $(0.25, 0.40)^t$
- (e) $(0.30, 0.50)^t$

15. Let

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

have the singular value decomposition $A = USV^t$, where

$$S = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then the first two columns u_1, u_2 of U are

(a)
$$u_1 = (1, 0, 0)^t$$
, $u_2 = (0, 1, 0)^t$

(b)
$$u_1 = (0, 1, 0)^t$$
, $u_2 = (1, 0, 0)^t$

(c)
$$u_1 = (0,0,1)^t$$
, $u_2 = (1,0,0)^t$

(d)
$$u_1 = (0, 1, 0)^t$$
, $u_2 = (0, 0, 1)^t$

(e)
$$u_1 = (1,0,0)^t$$
, $u_2 = (0,0,1)^t$

16. Consider the nonlinear system

$$\begin{cases} x_1^2 - x_2 = 0, \\ x_1 + x_2^2 = 3. \end{cases}$$

Using Newton's method with initial guess $\mathbf{x}^{(0)} = (1,1)^t$, the first iterate $\mathbf{x}^{(1)} = (x_1^{(1)}, x_2^{(1)})^t$ is

- (a) $(1.2, 1.4)^t$
- (b) $(0.8, 1.2)^t$
- (c) $(1.0, 1.5)^t$
- (d) $(1.4, 1.2)^t$
- (e) $(1.3, 1.3)^t$

17. Consider the nonlinear system

$$\begin{cases} x_1^2 + x_2 - 1 = 0, \\ x_1 + x_2^2 - 1 = 0. \end{cases}$$

Using Steepest Descent method with $\alpha = 0.25$ and $x^{(0)} = (0,0)^t$. Then the second iterate $\mathbf{x}^{(2)}$ is approximately

- (a) $(0.750, 0.750)^t$
- (b) $(0.250, 0.250)^t$
- (c) $(0.375, 0.375)^t$
- (d) $(0.600, 0.600)^t$
- (e) $(0.450, 0.450)^t$

18. In applying the linear Finite Difference method with step size $h = \frac{1}{4}$ to the boundary value problem

$$y'' - y = 0$$
, $0 \le x \le 1$, $y(0) = 0$, $y(1) = 0$,

a linear system of equations A**w** = **b** is obtained. The sum of the diagonal elements of A is

- (a) $\frac{99}{16}$
- (b) $\frac{33}{16}$
- (c) $\frac{9}{4}$
- (d) 6
- (e) $\frac{15}{4}$

19. If the Linear Finite Difference method is used to approximate the solution of the boundary value problem

$$y'' = y$$
, $0 \le x \le 1$, $y(0) = 0$, $y(1) = \sin(1)$,

with step size $h = \frac{1}{2}$, then $y(0.5) \approx$

- (a) 0.3740
- (b) 0.3400
- (c) 0.2600
- (d) 0.2850
- (e) 0.4100

20. Consider the following data:

$$\begin{array}{c|cccc} x & 1.0 & 2.0 & 3.0 \\ \hline y & 2.3551 & c & 3.1116 \\ \end{array}$$

Suppose the least squares exponential curve fitted to the data is

$$f(x) = 2.1021 e^{b_1 x}.$$

Then the value of b_1 is

- (a) 0.1392
- (b) 1.1495
- (c) -1.9711
- (d) 0.3782
- (e) -0.9723