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1. Consider the differential equation: (1 + t4)y′ + 4t3y = 4t3 tan−1(y), 0 ≤ t ≤ 1.
Given that y′ = f(t, y), then

(a) f satisfies Lipschitz condition with Lipschitz constant 2. (correct)

(b) f satisfies Lipschitz condition with Lipschitz constant 3/2.

(c) f satisfies Lipschitz condition with Lipschitz constant 1.

(d) f satisfies Lipschitz condition with Lipschitz constant 1/2.

(e) f does not satisfy Lipschitz condition.

2. Consider the initial value problem: y′ = 1 + y/t, 1 ≤ t ≤ 2,with h = 0.25, with
exact solution y(t) = t ln(t) + 2t. If the Euler’s method is used to approximate the
solution, then the least bound for |y(1.75)− w3| is

(a) 0.139625 (correct)

(b) 0.138715

(c) 0.140231

(d) 0.143923

(e) 0.129271

no students = 54
Average = 74.0741 %

no students = 54
Average = 74.0741 %
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3. Consider the initial value problem: y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 0,with
h = 0.5, and exact solution y(t) = 1

5te
3t − 1

25e
3t + 1

25e
−2t. If the midpoint method

is used to approximate the solution, then the absolute error between the exact and
approximate solutions at t = 1 is:

(a) 0.0891 (correct)

(b) 0.0872

(c) 0.0914

(d) 0.0926

(e) 0.0792

4. Consider the initial value problem: y′ = 1 + (t− y)2, 2 ≤ t ≤ 3, y(2) = 1,with
h = 0.5. If the Runge-Kutta of order four is used to approximate the solution, then
y(2.5) ≈

(a) 1.8333 (correct)

(b) 1.8103

(c) 1.8204

(d) 1.8422

(e) 1.8037

no students = 54
Average = 66.6667 %

no students = 54
Average = 62.9630 %
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5. The linear system

{
2x1 − 6αx2 = 3,

6αx1 − 2x2 = 3,
has a unique solution if

(a) α 6= ∓1/3 (correct)

(b) α 6= ∓1/2

(c) α 6= ∓1

(d) α 6= −1

(e) α 6= 1

6. If the Gaussian elimination with partial pivoting and three digit rounding arithmetic

is used to solve the linear system

{
0.03x1 + 58.9x2 = 59.2,

5.31x1 − 6.10x2 = 47.0,
then x1 + x2 =

(a) 11 (correct)

(b) 10

(c) 9

(d) 8

(e) 12

no students = 54
Average = 72.2222 %

no students = 54
Average = 74.0741 %
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7. The row interchanges required to solve the linear system,


2x1 − 3x2 + 2x3 = 5,

−4x1 + 2x2 − 6x3 = 14,

2x1 + 2x2 + 4x3 = 8,

using Gaussian elimination with partial pivoting is/are

(a) Interchange rows 1 and 2, then interchange rows 2 and 3. (correct)

(b) No row interchanges are required.

(c) Interchange rows 1 and 3, then interchange rows 2 and 3.

(d) Interchange rows 1 and 2 only.

(e) Interchange rows 2 and 3 only.

8. Consider the linear system Ax = b,


2x1 + x2 − x3 = 1,

−4x1 + 2x2 + 4x3 = 0,

6x1 + 3x2 + 2x3 = −5.

If the coefficient

matrix A is expressed in LU form and Ly = b is solved for y =

y1y2
y3

. Then

y1 + y2 − y3 =

(a) 11 (correct)

(b) 9

(c) −8

(d) −5

(e) −6.5

no students = 54
Average = 40.7407 %

no students = 54
Average = 70.3704 %
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9. Consider a (4 × 4) matrix A. If performing Gaussian elimination on A requires
interchanging row 1 with row 4, and then row 4 with row 2. If P is the permutation
matrix such that A can be factored into the product LU , then P−1 =

(a)


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 (correct)

(b)


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



(c)


0 1 0 0
0 0 0 1
1 0 0 0
1 0 1 0



(d)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



(e)


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



10. If the following system is solved using Jacobi iterative method,


10x1 − x2 = 9,

−x1 + 10x2 − 2x3 = 7,

−2x2 + 10x3 = 6,

with x(0) = (1, 1, 1)t. then x
(2)
1 + x

(2)
2 + x

(2)
3 =

(a) 2.76 (correct)

(b) 2.65

(c) 3.07

(d) 4.15

(e) 2.45

no students = 54
Average = 57.4074 %

no students = 54
Average = 57.4074 %



241, Math 371, Major Exam II Page 6 of 7 MASTER

11. If the following system is solved using Gauss-Seidel iterative method,
3x1 − x2 + x3 = 1,

3x1 + 6x2 + 2x3 = 0,

3x1 + 3x2 + 7x3 = 4,

with x(0) = (2, 1, 3)t. Then x
(2)
2 =

(a) −0.2063 (correct)

(b) −0.3011

(c) −0.3193

(d) −0.2201

(e) 0.1231

12. If the system

{
x1 + 2.5x2 = 1,

2.5x1 + 3x2 = 5,
is solved using Conjugate Gradient method with

x(0) = (0, 0)t. Then x
(2)
1 + x

(2)
2 =

(a) 2.1538 (correct)

(b) 2.3842

(c) 1.9362

(d) 1.7851

(e) 3.0478

no students = 54
Average = 68.5185 %

no students = 54
Average = 74.0741 %
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13. If A =

[
0 2
2 3

]
, then ||A||2 =

(a) 4 (correct)

(b) 1

(c) 2.5

(d) 3.5

(e) 5

14. The following linear system Ax = b,

{
1
2x1 + 1

3x2 = 1
63 ,

1
3x1 + 1

4x2 = 1
168 ,

has x as the

actual solution and x̃ = (0.142,−0.166)t as an approximate solution.
Then ||Ax̃− b||∞ =

(a) 0.000206 (correct)

(b) 0.000213

(c) 0.0001998

(d) 0.000191

(e) 0.000341

no students = 54
Average = 59.2593 %

no students = 54
Average = 64.8148 %




