King Fahd University of Petroleum and Minerals Information Technology Center Computing Services Section

Dept. of: Math

Course: math371 Second Maior Exam

Semseter: 242

Tuesday, April 15, 2025

			Raw Score	% Score	
Total no. of Students:	47	Course Mean:	50.96	72.8	
Course Std. Dev. :	13.9	Max. Score:	70	100	
		Min. Score:	15	21.43	

Average (%) of each question

Q1	76.5957
Q2	89.3617
Q3	63.8298
Q4	80.8511
Q5	68.0851
Q6	85.1064
Q7	78.7234
Q8	70.2128
Q 9	70.2128
Q10	59.5745
Q11	59.5745
Q12	70.2128
Q13	65.9574
Q14	80.8511

1. Which one of the following functions does **not** satisfy a Lipschitz condition on the domain D?

(a)
$$f(t,y) = \sqrt{y-1} + \sin 3t$$
 on $D = \{(t,y) | 1 \le t \le 2, 0 \le y \le 2\}$ _____(correct)

(b)
$$f(t,y) = (t^2 + 1)y$$
 on $D = \{(t,y)|0 \le t1, -1 \le y \le 1\}$

(c)
$$f(t,y) = te^{2y} + ty$$
 on $D = \{(t,y)|1 \le t \le 2, 1 \le y \le 2\}$

(d)
$$f(t,y) = \sqrt{y-1} + t^2$$
 on $D = \{(t,y)| 2 \le t \le 3, 2 \le y \le 3\}$

(e)
$$f(t,y) = 1 + \cos ty$$
 on $D = \{(t,y)|0 \le t \le 2, -1 \le y \le 1\}$

2. If the Euler's method is used to approximate the solution for the initial-value problem

$$y' = -y + ty^{\frac{1}{2}}, 3 \le t \le 4, y(3) = 2,$$

with h = 0.1, and knowing that $w(t_8) = 4.2509$, then $y(4) \approx$

- (a) 4.9856 _____(correct)
- (b) 4.7120
- (c) 4.2931
- (d) 4.8956
- (e) 4.7865

no students = 54 Average = 89.3617 % 3. If the Euler's method is used to approximate the solution for the initial-value problem

$$y' = \frac{2 - 2ty}{t^2 + 1}, \ 0 \le t \ge 1, \ y(0) = 1$$

with exact solution $y(t) = \frac{2t+1}{t^2+1}$, h = 0.2, then the smallest bound error at t = 0.6 is (where $|y''(t)| \le 2.3416$)

- (b) 0.2125
- (c) 0.1625
- (d) 0.1726
- (e) 0.1825

no students = 47 Average = 63.8298 %

4. Use the Ranga-Kutta method of order four to approximate the solution of initial-value problem

$$y' = -y + ty^{\frac{1}{2}}, \ 3 \le t \le 4, \ y(3) = 2$$

with n = 10, then $w_1 =$

- (a) 2.2321 _____(correct)
- (b) 2.4321
- (c) 2.3321
- (d) 2.5321
- (e) 3.2321

- no students = 54
- Average = 80.8511 %

5. Using the Mid point method to approximate the solution of initial value problem

$$y' = -y + ty^{\frac{1}{2}}, \ 3 \le t \le 4, \ y(3) = 2$$

with n = 10, then $w_2 =$

(a) 2.4799 _____(correct)

no students = 47

Average = 68.0851%

- (b) 2.5799
- (c) 2.4199
- (d) 2.4299
- (e) 2.9799

6. Using Gaussian elimination with partial pivoting and two-digit chopping arithmetic to solve

$$\sqrt{2}x + \sqrt{3}y = \pi$$
$$\sqrt{7}x + y = 1$$

then y =

- (a) 2.2 _____(correct)
- (b) 2.1
- (c) 2.0
- (d) 2.3
- (e) 1.9

- no students = 47
- Average = 85.1064 %

7. If Gaussian elimination is used to solve the system

$$2x_1 - 1.5x_2 + 3x_3 = 1$$

$$-x_1 + 2x_3 = 3$$

$$4x_1 - 4.5x_2 + 5x_3 = 1$$

then $x_2 =$

- (a) 0_{-} (correct)
- (b) -1
- no students = 47(c) 1 Average = 78.7234 %
- (d) 0.5
- (e) 0.2

8. If the matrix
$$\begin{bmatrix} 2 & 0 & -1 \\ -6 & 1 & 2 \\ 4 & 3 & 3 \end{bmatrix}$$
 is expressed in LU form, where $L = \begin{bmatrix} 1 & 0 & 0 \\ l_1 & 1 & 0 \\ l_2 & l_3 & 1 \end{bmatrix}$ and $U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$, then $l_2 + f = 0$

- (a) 10 ____ (correct)
- (b) 9
- (c) 11
- (d) 12
- (e) 13

- no students = 47
- Average = 70.2128 %

9. If
$$A = \begin{bmatrix} a & 1 & 0 \\ b & 2 & 3 \\ c & 0 & 1 \end{bmatrix}$$
 and the permutation matrix $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then $PA = \begin{bmatrix} a & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

- (a) $\begin{bmatrix} c & 0 & 1 \\ b & 2 & 3 \\ a & 1 & 0 \end{bmatrix}$ (correct)
- (b) $\begin{bmatrix} 1 & a & 0 \\ 2 & b & 3 \\ 0 & c & 1 \end{bmatrix}$

no students = 47 Average = 70.2128 %

- (c) $\begin{bmatrix} a & 1 & 0 \\ c & 0 & 1 \\ b & 2 & 3 \end{bmatrix}$
- (d) A
- (e) 2A

10. If the system

$$\frac{1}{2}x + \frac{1}{3}y = \frac{1}{63}$$
$$\frac{1}{3}x + \frac{1}{4}y = \frac{1}{168}$$

has the actual solution $\left(\frac{1}{7}, \frac{-1}{6}\right)^t$ and an approximation solution $\bar{X} = (0.14, -1.6)^t$, then $\|A\bar{X} - b\|_{\infty} \approx$

- (a) 0.4792 _____(correct)
- (b) -0.3680
- (c) 0.3680
- (d) -0.4792
- (e) 1

no students = 47 Average = 59.5745 %

11. If
$$A = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ 2 & -3 & 0\\ 2 & -1 & -1 \end{bmatrix}$$
, then $||A||_{\infty} =$

- (a) 5 _____ $_(correct)$
- (b) 1
- (c) 4
- no students = 47(d) 0Average = 59.5745 %
- (e) 6

12. If
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $||A||_2 =$

- (a) 3 _____ (correct)
- (b) 1
- (c) 4

no students = 47

- (d) 9
- Average = 70.2128 %
- (e) 18

13. Let $X^{(0)} = (0,0,0)^t$. If the second iteration of Gauss-Seidel Method for the system

$$2x_1 - x_2 + x_3 = -1$$
$$2x_1 + 2x_2 + 2x_3 = 4$$
$$-x_1 - x_2 + 2x_3 = -5$$

is $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)})$, then $x_2^{(2)}$

(a) 2 _____(correct)

no students = 47

Average = 65.9574 %

- (b) $-\frac{1}{2}$
- (c) $\frac{3}{2}$
- $(d) -\frac{3}{2}$
- (e) $\frac{5}{2}$

14. If the following system is solved using the Cojugate Gradient method and $C = C^{-1} = I$ with $x^{(0)} = (0,0)^t$.

$$5x_1 + x_2 = 3$$
$$x_1 + 8x_2 = 2$$

(Use four-digit rounding)

- (a) $(0.5641, 0.1795)^t$ _____(correct)
- (b) $(0.6541, 0.1795)^t$
- (c) $(0.541, 0.1595)^t$
- (d) $(0.7541, 0.16795)^t$
- (e) (0,0)

no students = 47 Average = 80.8511 %

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	C 5	E 10	E 14	Е 6
2	A	В 12	D 11	C ₁₃	E 9
3	A	Е 3	E 6	С 6	C ₁₃
4	A	A 8	D 12	D 5	C 1
5	A	A 1	E 13	D 3	D 8
6	A	E 10	D 8	C 4	D 2
7	A	A 14	В 5	A 8	A 12
8	A	A 7	С 1	C 2	E 14
9	A	A 11	Вз	C 11	C 5
10	A	D 9	В 4	A 9	Е 11
11	A	A 4	С 9	C 12	E 10
12	A	В 6	С 7	В 1	A 4
13	A	D 13	E 2	В 7	Вз
14	A	C 2	D 14	A 10	В 7

Answer Counts

V	A	В	С	D	Ε
1	6	2	2	2	2
2	0	3	3	4	4
3	3	2	6	2	1
4	2	2	3	2	5