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1. Which of the following is always true about the differential equation

y′ = f(t, y), a ≤ t ≤ b, y(a) = α

on the domain D = {(t, y) : a ≤ t ≤ b,−∞ < y <∞}

(a) If f is continuous on D and Lipschitz in the variable y on D, then the problem
has a unique solution.

(b) If f is continuous on D, then the problem has a unique solution.

(c) If f is continuous on D and Lipschitz in the variable y on D, the problem has
a solution but this solution is not unique.

(d) If f is continuous on D, then the problem is well-posed.

(e) If f is continuous on D and Lipschitz in the variable y on D, the problem is not
necessarily

2. Approximating the solution of the initial value problem

y′ = te3t − 2y, 0 ≤ t ≤ 1, y(0) = 1

by Euler’s method with h = 0.25 gives y(0.5) ≈

(a) 0.3823

(b) 0.5000

(c) 0.7513

(d) 0.1323

(e) 0.9398

no students = 29
Average = 82.7586 %

no students = 29
Average = 79.3103 %
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3. Consider the initial value problem

y′ − 1 =
y

t
, 1 ≤ t ≤ 2, y(1) = 2,

with exact solution y(t) = t ln(t) + 2t. Use the Euler error estimate with h = 0.2 to
find the smallest bound on the error |y(1.8)− w4|

(a) 1.226× 10−1

(b) 6.128× 10−2

(c) 2.451× 10−1

(d) 5.050× 10−1

(e) 2.152× 10−2

4. Consider the initial value problem

y′ + 2y = e−t, 0 ≤ t ≤ 2, y(0) = 1,

with exact solution y(t) = e−t. Using second-order Runge-Kutta method with
N = 10, the absolute error in approximating y(0.4) is

(a) 3.352× 10−3

(b) 2.237× 10−3

(c) 7.033× 10−3

(d) 6.778× 10−2

(e) 2.855× 10−4

no students = 29
Average = 58.6207 %

no students = 29
Average = 75.8621 %
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5. Approximating the solution of the initial value problem

y′ = et−y, 0 ≤ t ≤ 0.9, y(0) = 1

by the fourth-order Runge-Kutta (RK4) method with N = 3 gives y(0.3) ≈

(a) 1.1211

(b) 0.3000

(c) 1.2642

(d) 1.4298

(e) 2.0463

6. The value of α so that the linear system

x1 − x2 + αx3 = 3

−x1 + 2x2 − αx3 = −2

αx1 + x2 + 4x3 = 9

has no solution is

(a) α = −2

(b) α = 1

(c) α = −4

(d) α = 4

(e) α = 2

no students = 29
Average = 72.4138 %

no students = 29
Average = 55.1724 %
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7. Consider the linear system

−6x1 − 12x2 − x3 = −9

2x1 + x2 − x3 = 8

5x1 + 12x2 + x3 = 7

Let R
(k)
i denote the i-th row of the augmented matrix at stage k of the Gaussian

elimination and R
(k)
i ↔ R

(k)
j be an interchange of the i-th and j-th rows.

The row interchanges required to solve the system by partial pivoting are

(a) No row interchanges required in stages 1 and 2

(b) Stage 1: R
(1)
1 ↔ R

(1)
3 , Stage 2: R

(2)
2 ↔ R

(2)
3

(c) Stage 1: No row interchanges, Stage 2: R
(2)
2 ↔ R

(2)
3

(d) Stage 1: R
(1)
1 ↔ R

(1)
3 , Stage 2: No row interchanges

(e) Stage 1: R
(1)
1 ↔ R

(1)
2 , Stage 2: R

(2)
2 ↔ R

(2)
3

8. Consider the matrix

A =


0 0 −1 1
1 1 −1 2
−1 −1 2 0
1 2 0 2


The permutation matrix P such that

PA =


1 1 −1 2
1 2 0 2
−1 −1 2 0
0 0 −1 1


is

(a) P =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0



(b) P =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



no students = 29
Average = 75.8621%

no students = 29
Average = 70.3704 %
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(c) P =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0



(d) P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



(e) P =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


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9. Consider the linear system Ax = b, given by

A =

 2 1 −1
−4 2 4
6 3 2

 , x =

x1x2
x3

 , b =

 1
0
−5


Let A = LU be an LU-factorization of the matrix A, where L is lower triangular of
the form

L =

1 0 0
l1 1 0
l2 l3 1


and U is a corresponding upper triangular matrix. Then l1 − l2 − l3 =

(a) -5

(b) -1

(c) 1

(d) 0

(e) 3

10. The `∞ norm of the matrix

A =

 4 −1 7
−1 4 0
−7 0 4


is

(a) 12

(b) 5

(c) 11

(d) 10

(e) 15

no students = 29
Average = 82.7586 %

no students = 29
Average = 82.7586 %
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11. Given the matrix

A =

[
2 2
−1 2

]
,

‖A‖2 =

(a) 3

(b) 9

(c) 1

(d) 2

(e) 4

12. Let x(1) and x(2) be the first and second iterates, respectively, of the Jacobi iteration
with x(0) = (1, 0,−1)t in approximating the solution of the system

3x1 − x2 + x3 = 3

3x1 + 6x2 + 2x3 = 7

3x1 + 3x2 + 7x3 = 1

Then ‖x(2) − x(1)‖∞ =

(a) 4
7

(b) 17
42

(c) 2
21

(d) 11
14

(e) 4
3

no students = 29
Average = 72.4138 %

no students = 29
Average = 65.5172 %
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13. Consider the system

10x1 + 5x2 = 2

5x1 + 10x2 − 4x3 = 0

−4x2 + 8x3 − x4 = 2

−x3 + 5x4 = 5

The first iterate of the Gauss-Seidel method in solving the system with initial guess
x(0) = (1, 0,−1, 1)t is

(a) x(1) = (0.2,−0.5, 0.125, 1.025)t

(b) x(1) = (0.2,−0.5, 0.375, 0.8)t

(c) x(1) = (0.2,−0.9,−0.075, 0.985)t

(d) x(1) = (0.2,−0.9, 0.375, 0.925)t

(e) x(1) = (0.2,−0.5, 0.125, 0.8)t

14. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) be the first iteration of the conjugate gradient method, using the initial
guess x(0) = (1,−1)t and the search direction v1 = (1, 0)t. Then, ‖x(1)‖2 =

(a) 1.5366

(b) 1.3611

(c) 2.2669

(d) 0.1667

(e) 1.0000

no students = 29
Average = 65.5172 %

no students = 29
Average = 79.3103 %



Math 371, 242, Major Exam II Answer KEY

Q MASTER CODE01 CODE02 CODE03 CODE04
1 A C 10 C 6 C 3 A 8

2 A C 5 B 1 D 11 B 13

3 A A 7 B 8 C 9 E 4

4 A C 2 B 9 B 4 B 1

5 A E 11 E 12 A 7 B 10

6 A A 3 D 10 B 13 C 3

7 A A 6 E 2 E 5 E 5

8 A D 14 C 11 A 2 B 11

9 A A 1 C 14 C 14 C 6

10 A D 9 B 3 B 8 D 9

11 A D 8 C 4 A 1 D 2

12 A B 13 D 13 D 10 A 12

13 A D 4 B 7 C 12 C 14

14 A D 12 A 5 A 6 C 7
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Answer Counts

V A B C D E
1 4 1 3 5 1
2 1 5 4 2 2
3 4 3 4 2 1
4 2 4 4 2 2




