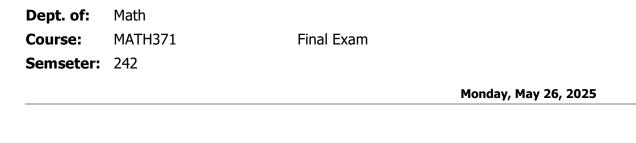
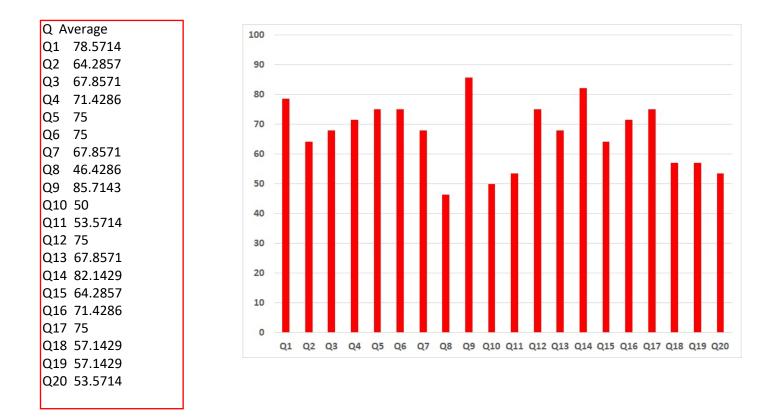
King Fahd University of Petroleum and Minerals Information Technology Center Computing Services Section



			Raw Score	% Score
Total no. of Students	28	Course Mean:	66.96	66.96
Course Std. Dev. :	21.96	Max. Score:	100	100
		Min. Score:	20	20



King Fahd University of Petroleum and Minerals Department of Mathematics **Math 371** Final Exam 242 May 25, 2025 Net Time Allowed: 120 Minutes

MASTER VERSION

MASTER

1. Let $P_2(x)$ be the second Taylor polynomial for $f(x) = \ln(x+1)$ about $x_0 = 0$. Then the smallest upper bound, by the Taylor theorem, for $|f(0.5) - P_2(0.5)|$ is

(a) 4.17×10^{-2}	(corre	ect)
(b) 1.25×10^{-1}		
(c) 3.33×10^{-1}		
(d) 2.08×10^{-2}	Average	
(e) 8.34×10^{-2}		

78.5714

2. Consider $f(x) = x - 10\pi + 6e$. Using three-digit rounding arithmetic, $f(-3/62) \approx$

(a) -15.1	(co	prrect
(b) -15.2		
(c) 15.0	A. 1979-197	
(d) 14.9	Average	
(e) 14.8		

64.2857

3. Consider the problem

 $e^x - x^2 + 3x - 2 = 0, \quad -1 \le x \le 2.$

The minimum number of iteration required by the bisection method to guarantee $10^{-8}~{\rm accuracy}$ is

(a) 29		(correct)
(b) 27	Average	
(c) 35	Average	
(d) 25	67.8571	
(e) 15	07.0371	

4. Using the secant method with $p_0 = -1$ and $p_1 = 0$ to approximate the solution of

 $-x^3 = \cos(x)$, we get $p_3 =$

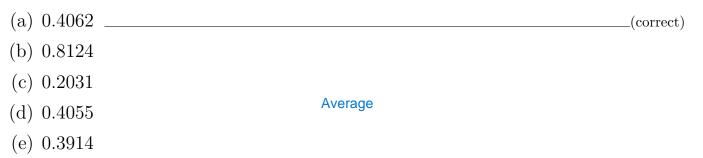
(a) -1.2521 _	(corre	ect)
(b) -0.7523		
(c) -0.8803	Average	
(d) -0.8657		
(e) -0.8655	71.4286	

5. Let $P_2(x)$ be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose the coefficient of x^2 in $P_2(x)$ is 6, then y =

75

6. Using the composite trapezoidal rule with n = 4,

$$\int_0^2 \frac{1}{x+4} dx \approx$$



75

7. Consider the initial value problem

$$y' = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5.$$

Using the Euler method with $n = 4, y(1.0) \approx$

(a) 2.2500	(cc	orrect)
(b) 3.3750	Average	
(c) 4.4375	Average	
(d) 1.1250	07.0574	
(e) 1.6875	67.8571	

8. Consider the matrix A and the vector **b**: $A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -1 \\ -2 & -3 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Let A = LU be a factorization of A, where L is lower triangle matrix with 1 on its diagonal and U is upper triangle. The solution of system $L\mathbf{y} = \mathbf{b}$, where $\mathbf{y} = (y_1, y_2, y_3)^t$ is

(a) $\mathbf{y} = (2, -5, 3)^t$		(correct)
(b) $\mathbf{y} = (-3, 3, 1)^t$		
(c) $\mathbf{y} = (0.1667, 0.667, 0.3333)^t$	Average	
(d) $\mathbf{y} = (-2, 5, -3)^t$		
(e) $\mathbf{y} = (2, -5, -1)^t$	46.4286	

Page 5 of 10

9. The first iteration of the Gauss-Seidel method for solving the linear system

$$2x_1 - x_2 = 4$$
$$-x_1 + 2x_2 - x_3 = 9$$
$$-x_2 + 2x_3 = 6$$

using the initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$ gives

(a) $\mathbf{x}^{(1)} = (2, 5.5, 5.75)^t$		(correct)
(b) $\mathbf{x}^{(1)} = (2, 4.5, 3)^t$	Average	
(c) $\mathbf{x}^{(1)} = (4, 9, 6)^t$	85.7143	
(d) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$	00.7140	
(e) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$		

10. Consider the linear system

 $6x_1 + 3x_2 = 4$ $2x_1 - 3x_2 = 1$

Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iteration, respectively, of the conjugate gradient method using the initial guess $\mathbf{x}^{(0)} = (1, -1)^t$ and the conjugate directions $\mathbf{v}^{(1)} = (1, 0)^t$ and $\mathbf{v}^{(2)} = (-1, 2)^t$. Then, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(2)}\|_{\infty} =$

(a) 1.0833		(correct)
(b) 1.1667	Average	
(c) 0.5417		
(d) 1.000	50	
(e) 0.6250		

11. Consider the following data

x	1.0	2.0	3.0	
y	2.3551	l	3.1116	ŀ

Let $f(x) = 2.1021e^{ax}$ by a least square curve fitted to the data. Then, a =

(a) 0.1392		(correct)
(b) 1.1495	Average	
(c) -1.9711		
(d) 0.3782	53.5714	
(e) -0.9723		

12. Consider the following data

x	0	1.0	2.0	
y	0.2849	0.8934	β	ŀ

Let $P_2(x) = a_2 x^2 + 0.5255 x + a_0$ be a least square polynomial fitted to the data. Then, $P_2(1.75) =$

13. Using the Gram-Schmidt process to find a set of orthogonal vectors u_1, u_2, u_3 from the linearly independent vectors

$$\mathbf{v}_1 = (2, -1, 1), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (0, 2, 0),$$

gives

(a)
$$\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$$
 (correct)
(b) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(c) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(d) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(e) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (-\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
Average

67.8571

14. The singular values of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ are

(a) $s_1 = 2.6762$,	$s_2 = 0.9153$.		(correct)
(b) $s_1 = 2.5959$,	$s_2 = 1.1231$	Average	
(c) $s_1 = 1.2644$,	$s_2 = 0.7380$		
(d) $s_1 = 7.1623$,	$s_2 = 0.8377$	82.1429	
(e) $s_1 = 2.6762$,	$s_2 = 0.8377$		

MASTER

15. The matrix
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$$
 has the singular value decomposition $A = USV^t$, with Average
 $S = \begin{bmatrix} 3.1623 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, $V = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
64.2857

The first two columns of the matrix U obtained using S and V are:

(a) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$ (correct) (b) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$ (c) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$ (d) $\mathbf{u}_1 = (0.6325, -0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$ (e) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$

16. Let A be a real matrix with m rows and n column, $m \ge n$ and $A = USV^t$. Which of the following statements is not always true

(a) S is invertible		(correct)
(b) U and V are orthogonal	Average	
(c) U and V are always invertible		
(d) All entries of S are non-negative	71.4286	
(e) U is $m \times m$ and V is $n \times n$		

17. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the Newton's method in solving

$$4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 = -8$$

$$-\frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 = -8,$$
Average
75

with
$$\mathbf{x}^{(0)} = (0, 0)^t$$
. Then $\mathbf{x}^{(1)} =$

- (a) $(0.4, 1.76)^t$ ______(correct) (b) $(-0.4, 1.76)^t$ (c) $(0.4, 1.92)^t$ (d) $(1.6, 0.56)^t$
- (e) $(0.4, -1.44)^t$

18. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the steepest descent method in solving the system of equations

$$3x_1^2 - x_2^2 = 0$$

$$3x_1x_2^2 - x_1^3 = 1,$$

with $\mathbf{x}^{(0)} = (1, \frac{1}{2})^t$, and $\alpha = 0.01$. Then $\mathbf{x}^{(1)} =$

(a) $(0.6138, 0.63)^t$		(correct)
(b) $(0.6138, 0.52)^t$	Average	
(c) $(0.6589, 0.57)^t$	57.1429	
(d) $(0.6589, 0.63)^t$		
(e) $(0.7038, 0.51)^t$		

Page 10 of 10

19. Consider the boundary value problem

$$y'' = 4(y - x),$$
 $0 \le x \le 1,$ $y(0) = 0, y(1) = 2.$

Applying the linear finite difference method with $h = \frac{1}{3}$

	Average	
(a) $y(\frac{1}{3}) = 0.5343, \ y(\frac{2}{3}) = 1.1580$		(correct)
(b) $y(\frac{1}{3}) = 0.3904, \ y(\frac{2}{3}) = 0.8060$		
(c) $y(\frac{1}{3}) = 0.2696, \ y(\frac{2}{3}) = 0.8073$	57.1429	
(d) $y(\frac{1}{3}) = 1.0377, \ y(\frac{2}{3}) = 1.7623$		
(e) $y(\frac{1}{3}) = 1.7797, \ y(\frac{2}{3}) = 2.6203$		

20. The linear finite difference scheme applied to the problem

 $y'' - y' - 2y = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}, \qquad y(0) = -0.3, \quad y(\frac{\pi}{2}) = -0.1,$ with $\frac{\pi}{8}$ results in the system Aw = b, where $\begin{array}{c} \text{Average} \\ \text{53.5714} \end{array}$

$$(a) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix}$$
(b)
$$A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.2228 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$
(c)
$$A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$
(d)
$$A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$
(e)
$$A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 371 Final Exam 242 May 25, 2025 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has <u>20</u> questions.

Important Instructions:

- 1. All types of smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the boundary value problem

$$y'' = 4(y - x), \qquad 0 \le x \le 1, \qquad y(0) = 0, \ y(1) = 2.$$

Applying the linear finite difference method with $h = \frac{1}{3}$

(a) $y(\frac{1}{3}) = 1.7797$, $y(\frac{2}{3}) = 2.6203$ (b) $y(\frac{1}{3}) = 1.0377$, $y(\frac{2}{3}) = 1.7623$ (c) $y(\frac{1}{3}) = 0.2696$, $y(\frac{2}{3}) = 0.8073$ (d) $y(\frac{1}{3}) = 0.5343$, $y(\frac{2}{3}) = 1.1580$ (e) $y(\frac{1}{3}) = 0.3904$, $y(\frac{2}{3}) = 0.8060$

2. Consider $f(x) = x - 10\pi + 6e$. Using three-digit rounding arithmetic, $f(-3/62) \approx$

- (a) -15.2
- (b) -15.1
- (c) 14.9
- (d) 14.8
- (e) 15.0

3. Consider the following data

x	1.0	2.0	3.0
y	2.3551	l	3.1116

Let $f(x) = 2.1021e^{ax}$ by a least square curve fitted to the data. Then, a =

- (a) -1.9711
- (b) 0.3782
- (c) 1.1495
- (d) -0.9723
- (e) 0.1392

- 4. Let $P_2(x)$ be the second Taylor polynomial for $f(x) = \ln(x+1)$ about $x_0 = 0$. Then the smallest upper bound, by the Taylor theorem, for $|f(0.5) - P_2(0.5)|$ is
 - (a) 8.34×10^{-2}
 - (b) 1.25×10^{-1}
 - (c) 2.08×10^{-2}
 - (d) 3.33×10^{-1}
 - (e) 4.17×10^{-2}

Page 3 of 10

5. The first iteration of the Gauss-Seidel method for solving the linear system

$$2x_1 - x_2 = 4$$

-x_1 + 2x_2 - x_3 = 9
-x_2 + 2x_3 = 6

using the initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$ gives

(a)
$$\mathbf{x}^{(1)} = (2, 4.5, 3)^t$$

(b) $\mathbf{x}^{(1)} = (2, 5.5, 5.75)^t$
(c) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$
(d) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$
(e) $\mathbf{x}^{(1)} = (4, 9, 6)^t$

- 6. Let A be a real matrix with m rows and n column, $m \ge n$ and $A = USV^t$. Which of the following statements is not always true
 - (a) U and V are orthogonal
 - (b) U and V are always invertible
 - (c) U is $m\times m$ and V is $n\times n$
 - (d) All entries of S are non-negative
 - (e) S is invertible

$$3x_1^2 - x_2^2 = 0$$

$$3x_1x_2^2 - x_1^3 = 1,$$

with
$$\mathbf{x}^{(0)} = (1, \frac{1}{2})^t$$
, and $\alpha = 0.01$. Then $\mathbf{x}^{(1)} =$

- (a) $(0.6589, 0.57)^t$
- (b) $(0.6589, 0.63)^t$
- (c) $(0.6138, 0.52)^t$
- (d) $(0.6138, 0.63)^t$
- (e) $(0.7038, 0.51)^t$

8. Using the secant method with $p_0 = -1$ and $p_1 = 0$ to approximate the solution of

 $-x^3 = \cos(x)$, we get $p_3 =$

- (a) -0.7523
- (b) -0.8657
- (c) -1.2521
- (d) -0.8803
- (e) -0.8655

- (a) 16
- (b) 8
- (c) 2.5
- (d) 10
- (e) 4.5

10. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the Newton's method in solving

$$4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 = -8$$
$$-\frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 = -8,$$

with $\mathbf{x}^{(0)} = (0, 0)^t$. Then $\mathbf{x}^{(1)} =$

- (a) $(0.4, 1.92)^t$
- (b) $(0.4, -1.44)^t$
- (c) $(0.4, 1.76)^t$
- (d) $(1.6, 0.56)^t$
- (e) $(-0.4, 1.76)^t$

242, Math 371, Final Exam

11. The singular values of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ are

(a)
$$s_1 = 7.1623$$
, $s_2 = 0.8377$
(b) $s_1 = 2.5959$, $s_2 = 1.1231$
(c) $s_1 = 2.6762$, $s_2 = 0.8377$
(d) $s_1 = 2.6762$, $s_2 = 0.9153$
(e) $s_1 = 1.2644$, $s_2 = 0.7380$

12. Consider the initial value problem

 $y' = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5.$

Using the Euler method with $n = 4, y(1.0) \approx$

- (a) 4.4375
- (b) 1.1250
- (c) 2.2500
- (d) 1.6875
- (e) 3.3750

CODE01

13. The linear finite difference scheme applied to the problem

$$y'' - y' - 2y = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}, \qquad y(0) = -0.3, \ y(\frac{\pi}{2}) = -0.1,$$

with $\frac{\pi}{8}$ results in the system Aw = b, where

$$(a) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$(b) \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$(c) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix}$$

$$(d) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.2228 \\ -0.1090 \\ -0.1394 \end{bmatrix}$$

$$(e) \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

14. Consider the linear system

 $6x_1 + 3x_2 = 4$ $2x_1 - 3x_2 = 1$

Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iteration, respectively, of the conjugate gradient method using the initial guess $\mathbf{x}^{(0)} = (1, -1)^t$ and the conjugate directions $\mathbf{v}^{(1)} = (1, 0)^t$ and $\mathbf{v}^{(2)} = (-1, 2)^t$. Then, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(2)}\|_{\infty} =$

- (a) 1.000
- (b) 1.1667
- (c) 0.5417
- (d) 1.0833
- (e) 0.6250

15. Consider the problem

 $e^x - x^2 + 3x - 2 = 0, \quad -1 \le x \le 2.$

The minimum number of iteration required by the bisection method to guarantee 10^{-8} accuracy is

- (a) 15
- (b) 25
- (c) 27
- (d) 29
- (e) 35

16. Consider the following data

x	0	1.0	2.0	1
y	0.2849	0.8934	β	ŀ

Let $P_2(x) = a_2x^2 + 0.5255x + a_0$ be a least square polynomial fitted to the data. Then, $P_2(1.75) =$

- (a) 2.2457
- (b) 1.4587
- (c) 1.6679
- (d) 1.8728
- (e) 2.0124

CODE01

17. The matrix $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$ has the singular value decomposition $A = USV^t$, with $S = \begin{bmatrix} 3.1623 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$

The first two columns of the matrix U obtained using S and V are:

(a)
$$\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$$
, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$
(b) $\mathbf{u}_1 = (0.6325, -0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$
(c) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5, 0.5)^t$
(d) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$
(e) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$

18. Using the composite trapezoidal rule with n = 4,

$$\int_0^2 \frac{1}{x+4} dx \approx$$

- (a) 0.8124
- (b) 0.4055
- (c) 0.2031
- (d) 0.4062
- (e) 0.3914

19. Consider the matrix A and the vector **b**:
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -1 \\ -2 & -3 & 4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Let A = LU be a factorization of A, where L is lower triangle matrix with 1 on its diagonal and U is upper triangle. The solution of system $L\mathbf{y} = \mathbf{b}$, where $\mathbf{y} = (y_1, y_2, y_3)^t$ is

- (a) $\mathbf{y} = (0.1667, 0.667, 0.3333)^t$
- (b) $\mathbf{y} = (2, -5, 3)^t$
- (c) $\mathbf{y} = (2, -5, -1)^t$
- (d) $\mathbf{y} = (-2, 5, -3)^t$
- (e) $\mathbf{y} = (-3, 3, 1)^t$

20. Using the Gram-Schmidt process to find a set of orthogonal vectors u_1, u_2, u_3 from the linearly independent vectors

$$\mathbf{v}_1 = (2, -1, 1), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (0, 2, 0),$$

gives

(a)
$$\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$$

(b) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (-\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(c) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(d) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(e) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 371 Final Exam 242 May 25, 2025 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the following data

x	1.0	2.0	3.0
y	2.3551	l	3.1116

Let $f(x) = 2.1021e^{ax}$ by a least square curve fitted to the data. Then, a =

- (a) -0.9723
- (b) 0.1392
- (c) 1.1495
- (d) 0.3782
- (e) -1.9711

2. Consider the initial value problem

 $y' = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5.$

Using the Euler method with $n = 4, y(1.0) \approx$

- (a) 3.3750
- (b) 4.4375
- (c) 2.2500
- (d) 1.6875
- (e) 1.1250

Page 2 of 10

3. The first iteration of the Gauss-Seidel method for solving the linear system

$$2x_1 - x_2 = 4$$
$$-x_1 + 2x_2 - x_3 = 9$$
$$-x_2 + 2x_3 = 6$$

using the initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$ gives

(a)
$$\mathbf{x}^{(1)} = (4, 9, 6)^t$$

(b) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$
(c) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$
(d) $\mathbf{x}^{(1)} = (2, 5.5, 5.75)^t$
(e) $\mathbf{x}^{(1)} = (2, 4.5, 3)^t$

- 4. Using the secant method with $p_0 = -1$ and $p_1 = 0$ to approximate the solution of $-x^3 = \cos(x)$, we get $p_3 =$
 - (a) -0.8657
 - (b) -1.2521
 - (c) -0.8803
 - (d) -0.8655
 - (e) -0.7523

5. Using the composite trapezoidal rule with n = 4,

$$\int_0^2 \frac{1}{x+4} dx \approx$$

- (a) 0.2031
- (b) 0.4062
- (c) 0.4055
- (d) 0.3914
- (e) 0.8124

6. Consider the problem

 $e^x - x^2 + 3x - 2 = 0, \quad -1 \le x \le 2.$

The minimum number of iteration required by the bisection method to guarantee $10^{-8}~{\rm accuracy}$ is

- (a) 27
- (b) 15
- (c) 35
- (d) 29
- (e) 25

CODE02

7. Consider the linear system

 $6x_1 + 3x_2 = 4$ $2x_1 - 3x_2 = 1$

Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iteration, respectively, of the conjugate gradient method using the initial guess $\mathbf{x}^{(0)} = (1, -1)^t$ and the conjugate directions $\mathbf{v}^{(1)} = (1, 0)^t$ and $\mathbf{v}^{(2)} = (-1, 2)^t$. Then, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(2)}\|_{\infty} =$

- (a) 0.6250
- (b) 1.000
- (c) 1.1667
- (d) 1.0833
- (e) 0.5417

8. Consider the matrix A and the vector **b**: $A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -1 \\ -2 & -3 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Let A = LU be a factorization of A, where L is lower triangle matrix with 1 on its diagonal and U is upper triangle. The solution of system $L\mathbf{y} = \mathbf{b}$, where $\mathbf{y} = (y_1, y_2, y_3)^t$ is

- (a) $\mathbf{y} = (0.1667, 0.667, 0.3333)^t$
- (b) $\mathbf{y} = (2, -5, -1)^t$
- (c) $\mathbf{y} = (-2, 5, -3)^t$
- (d) $\mathbf{y} = (-3, 3, 1)^t$
- (e) $\mathbf{y} = (2, -5, 3)^t$

9. Consider the boundary value problem

$$y'' = 4(y - x), \qquad 0 \le x \le 1, \qquad y(0) = 0, \ y(1) = 2.$$

Applying the linear finite difference method with $h = \frac{1}{3}$

- (a) $y(\frac{1}{3}) = 0.3904$, $y(\frac{2}{3}) = 0.8060$ (b) $y(\frac{1}{3}) = 0.2696$, $y(\frac{2}{3}) = 0.8073$ (c) $y(\frac{1}{3}) = 1.7797$, $y(\frac{2}{3}) = 2.6203$ (d) $y(\frac{1}{3}) = 0.5343$, $y(\frac{2}{3}) = 1.1580$ (e) $y(\frac{1}{3}) = 1.0377$, $y(\frac{2}{3}) = 1.7623$
- 10. The linear finite difference scheme applied to the problem

 $y'' - y' - 2y = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}, \qquad y(0) = -0.3, \ y(\frac{\pi}{2}) = -0.1,$ with $\frac{\pi}{8}$ results in the system Aw = b, where

$$(a) \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix}$$

$$(b) \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$(c) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.2228 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$(d) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$(e) \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix}$$

$$\mathbf{v}_1 = (2, -1, 1), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (0, 2, 0),$$

gives

(a)
$$\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (-\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$$

(b) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(c) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(d) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(e) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$

- 12. Let A be a real matrix with m rows and n column, $m \ge n$ and $A = USV^t$. Which of the following statements is not always true
 - (a) S is invertible
 - (b) U is $m \times m$ and V is $n \times n$
 - (c) All entries of S are non-negative
 - (d) U and V are orthogonal
 - (e) U and V are always invertible

- 13. Let $P_2(x)$ be the second Taylor polynomial for $f(x) = \ln(x+1)$ about $x_0 = 0$. Then the smallest upper bound, by the Taylor theorem, for $|f(0.5) - P_2(0.5)|$ is
 - (a) 2.08×10^{-2}
 - (b) 8.34×10^{-2}
 - (c) 4.17×10^{-2}
 - (d) 3.33×10^{-1}
 - (e) 1.25×10^{-1}

14. The singular values of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ are

(a) $s_1 = 7.1623$, $s_2 = 0.8377$ (b) $s_1 = 2.6762$, $s_2 = 0.9153$ (c) $s_1 = 1.2644$, $s_2 = 0.7380$ (d) $s_1 = 2.6762$, $s_2 = 0.8377$ (e) $s_1 = 2.5959$, $s_2 = 1.1231$

CODE02

15. The matrix $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$ has the singular value decomposition $A = USV^t$, with $S = \begin{bmatrix} 3.1623 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$

The first two columns of the matrix U obtained using S and V are:

(a)
$$\mathbf{u}_1 = (0.6325, -0.3162, 0.3162, 0.6325)^t$$
, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$
(b) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$
(c) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$
(d) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5, 0.5)^t$
(e) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$

- 16. Let $P_2(x)$ be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose the coefficient of x^2 in $P_2(x)$ is 6, then y =
 - (a) 10
 - (b) 4.5
 - (c) 16
 - (d) 2.5
 - (e) 8

Page 9 of 10

CODE02

17. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the Newton's method in solving

$$4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 = -8$$
$$-\frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 = -8,$$

with
$$\mathbf{x}^{(0)} = (0, 0)^t$$
. Then $\mathbf{x}^{(1)} =$

(a) $(0.4, 1.92)^t$ (b) $(1.6, 0.56)^t$ (c) $(0.4, 1.76)^t$ (d) $(-0.4, 1.76)^t$ (e) $(0.4, -1.44)^t$

18. Consider $f(x) = x - 10\pi + 6e$. Using three-digit rounding arithmetic, $f(-3/62) \approx$

- (a) -15.2
- (b) 15.0
- (c) 14.8
- (d) 14.9
- (e) -15.1

CODE02

19. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the steepest descent method in solving the system of equations

$$3x_1^2 - x_2^2 = 0$$

$$3x_1x_2^2 - x_1^3 = 1,$$

with
$$\mathbf{x}^{(0)} = (1, \frac{1}{2})^t$$
, and $\alpha = 0.01$. Then $\mathbf{x}^{(1)} =$

- (a) $(0.6138, 0.63)^t$
- (b) $(0.6589, 0.57)^t$
- (c) $(0.6138, 0.52)^t$
- (d) $(0.7038, 0.51)^t$
- (e) $(0.6589, 0.63)^t$

20. Consider the following data

x	0	1.0	2.0	
y	0.2849	0.8934	β	ŀ

Let $P_2(x) = a_2x^2 + 0.5255x + a_0$ be a least square polynomial fitted to the data. Then, $P_2(1.75) =$

- (a) 2.0124
- (b) 2.2457
- (c) 1.8728
- (d) 1.6679
- (e) 1.4587

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 371 Final Exam 242 May 25, 2025 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has $\underline{20}$ questions.

Important Instructions:

- 1. All types of smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. Consider the following data

x	1.0	2.0	3.0	
y	2.3551	l	3.1116	ŀ

Let $f(x) = 2.1021e^{ax}$ by a least square curve fitted to the data. Then, a =

- (a) 0.3782
- (b) 1.1495
- (c) -1.9711
- (d) 0.1392
- (e) -0.9723

2. The matrix $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$ has the singular value decomposition $A = USV^t$, with $S = \begin{bmatrix} 3.1623 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$

The first two columns of the matrix U obtained using S and V are:

(a) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$ (b) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$ (c) $\mathbf{u}_1 = (0.6325, -0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$ (d) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$ (e) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$

CODE03

3. Consider the linear system

 $6x_1 + 3x_2 = 4$ $2x_1 - 3x_2 = 1$

Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iteration, respectively, of the conjugate gradient method using the initial guess $\mathbf{x}^{(0)} = (1, -1)^t$ and the conjugate directions $\mathbf{v}^{(1)} = (1, 0)^t$ and $\mathbf{v}^{(2)} = (-1, 2)^t$. Then, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(2)}\|_{\infty} =$

- (a) 1.1667
- (b) 1.000
- (c) 1.0833
- (d) 0.6250
- (e) 0.5417
- 4. The linear finite difference scheme applied to the problem

$$y'' - y' - 2y = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}, \qquad y(0) = -0.3, \ y(\frac{\pi}{2}) = -0.1,$$

with $\frac{\pi}{8}$ results in the system Aw = b, where

$$\begin{array}{l} \text{(a)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix} \\ \text{(b)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.2228 \\ -0.1090 \\ -0.1786 \end{bmatrix} \\ \text{(c)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix} \\ \text{(d)} \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix} \\ \text{(e)} \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.3836 \\ -0.1090 \\ -0.1394 \end{bmatrix} \end{array}$$

- 5. Let A be a real matrix with m rows and n column, $m \ge n$ and $A = USV^t$. Which of the following statements is not always true
 - (a) U and V are orthogonal
 - (b) S is invertible
 - (c) All entries of S are non-negative
 - (d) U is $m \times m$ and V is $n \times n$
 - (e) U and V are always invertible

6. Consider the following data

	x	0	1.0	2.0	
ĺ	y	0.2849	0.8934	β	ŀ

Let $P_2(x) = a_2 x^2 + 0.5255 x + a_0$ be a least square polynomial fitted to the data. Then, $P_2(1.75) =$

- (a) 1.6679
- (b) 1.4587
- (c) 2.2457
- (d) 2.0124
- (e) 1.8728

7. Using the composite trapezoidal rule with n = 4,

$$\int_0^2 \frac{1}{x+4} dx \approx$$

- (a) 0.8124
- (b) 0.2031
- (c) 0.3914
- (d) 0.4062
- (e) 0.4055

8. Consider the problem

 $e^x - x^2 + 3x - 2 = 0, \quad -1 \le x \le 2.$

The minimum number of iteration required by the bisection method to guarantee $10^{-8}~{\rm accuracy}$ is

- (a) 35
- (b) 29
- (c) 25
- (d) 27
- (e) 15

- 9. Let $P_2(x)$ be the second Taylor polynomial for $f(x) = \ln(x+1)$ about $x_0 = 0$. Then the smallest upper bound, by the Taylor theorem, for $|f(0.5) - P_2(0.5)|$ is
 - (a) 4.17×10^{-2}
 - (b) 8.34×10^{-2}
 - (c) 2.08×10^{-2}
 - (d) 1.25×10^{-1}
 - (e) 3.33×10^{-1}

10. Consider the boundary value problem

y'' = 4(y - x), $0 \le x \le 1,$ y(0) = 0, y(1) = 2.

Applying the linear finite difference method with $h = \frac{1}{3}$

(a) $y(\frac{1}{3}) = 0.3904$, $y(\frac{2}{3}) = 0.8060$ (b) $y(\frac{1}{3}) = 1.0377$, $y(\frac{2}{3}) = 1.7623$ (c) $y(\frac{1}{3}) = 0.2696$, $y(\frac{2}{3}) = 0.8073$ (d) $y(\frac{1}{3}) = 1.7797$, $y(\frac{2}{3}) = 2.6203$ (e) $y(\frac{1}{3}) = 0.5343$, $y(\frac{2}{3}) = 1.1580$ 11. Using the secant method with $p_0 = -1$ and $p_1 = 0$ to approximate the solution of

 $-x^3 = \cos(x)$, we get $p_3 =$

- (a) -0.8657
- (b) -0.8803
- (c) -1.2521
- (d) -0.8655
- (e) -0.7523

12. The singular values of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ are

(a) $s_1 = 7.1623$, $s_2 = 0.8377$ (b) $s_1 = 2.6762$, $s_2 = 0.8377$ (c) $s_1 = 1.2644$, $s_2 = 0.7380$ (d) $s_1 = 2.6762$, $s_2 = 0.9153$ (e) $s_1 = 2.5959$, $s_2 = 1.1231$

Page 7 of 10

CODE03

13. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the Newton's method in solving

$$4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 = -8$$
$$-\frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 = -8,$$

with
$$\mathbf{x}^{(0)} = (0, 0)^t$$
. Then $\mathbf{x}^{(1)} =$

(a) $(0.4, -1.44)^t$ (b) $(-0.4, 1.76)^t$ (c) $(0.4, 1.92)^t$ (d) $(1.6, 0.56)^t$ (e) $(0.4, 1.76)^t$

14. Consider $f(x) = x - 10\pi + 6e$. Using three-digit rounding arithmetic, $f(-3/62) \approx$

- (a) -15.2
- (b) -15.1
- (c) 14.8
- (d) 14.9
- (e) 15.0

CODE03

15. Consider the matrix A and the vector **b**: $A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -1 \\ -2 & -3 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Let A = LU be a factorization of A, where L is lower triangle matrix with 1 on its diagonal and U is upper triangle. The solution of system $L\mathbf{y} = \mathbf{b}$, where $\mathbf{y} = (y_1, y_2, y_3)^t$ is

(a) $\mathbf{y} = (-3, 3, 1)^t$ (b) $\mathbf{y} = (2, -5, 3)^t$ (c) $\mathbf{y} = (-2, 5, -3)^t$ (d) $\mathbf{y} = (0.1667, 0.667, 0.3333)^t$ (e) $\mathbf{y} = (2, -5, -1)^t$

- 16. Let $P_2(x)$ be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose the coefficient of x^2 in $P_2(x)$ is 6, then y =
 - (a) 10
 - (b) 16
 - (c) 4.5
 - (d) 2.5
 - (e) 8

$$3x_1^2 - x_2^2 = 0$$

$$3x_1x_2^2 - x_1^3 = 1,$$

with
$$\mathbf{x}^{(0)} = (1, \frac{1}{2})^t$$
, and $\alpha = 0.01$. Then $\mathbf{x}^{(1)} =$

- (a) $(0.6589, 0.63)^t$
- (b) $(0.6589, 0.57)^t$
- (c) $(0.7038, 0.51)^t$
- (d) $(0.6138, 0.52)^t$
- (e) $(0.6138, 0.63)^t$

18. Using the Gram-Schmidt process to find a set of orthogonal vectors u_1, u_2, u_3 from the linearly independent vectors

$$\mathbf{v}_1 = (2, -1, 1), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (0, 2, 0),$$

gives

(a)
$$\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$$

(b) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(c) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(d) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (-\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(e) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$

19. Consider the initial value problem

$$y' = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5.$$

Using the Euler method with $n = 4, y(1.0) \approx$

- (a) 4.4375
- (b) 1.6875
- (c) 3.3750
- (d) 2.2500
- (e) 1.1250

20. The first iteration of the Gauss-Seidel method for solving the linear system

$$2x_1 - x_2 = 4$$
$$-x_1 + 2x_2 - x_3 = 9$$
$$-x_2 + 2x_3 = 6$$

using the initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$ gives

(a) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$ (b) $\mathbf{x}^{(1)} = (2, 5.5, 5.75)^t$ (c) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$ (d) $\mathbf{x}^{(1)} = (4, 9, 6)^t$ (e) $\mathbf{x}^{(1)} = (2, 4.5, 3)^t$ King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 371 Final Exam 242 May 25, 2025 Net Time Allowed: 120 Minutes

Name		
ID	Sec	

Check that this exam has $\underline{20}$ questions.

Important Instructions:

- 1. All types of smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

$$3x_1^2 - x_2^2 = 0$$

$$3x_1x_2^2 - x_1^3 = 1,$$

with
$$\mathbf{x}^{(0)} = (1, \frac{1}{2})^t$$
, and $\alpha = 0.01$. Then $\mathbf{x}^{(1)} =$

- (a) $(0.7038, 0.51)^t$
- (b) $(0.6138, 0.52)^t$
- (c) $(0.6138, 0.63)^t$
- (d) $(0.6589, 0.63)^t$
- (e) $(0.6589, 0.57)^t$

2. The first iteration of the Gauss-Seidel method for solving the linear system

$$2x_1 - x_2 = 4$$
$$-x_1 + 2x_2 - x_3 = 9$$
$$-x_2 + 2x_3 = 6$$

using the initial guess $\mathbf{x}^{(0)} = (0, 0, 0)^t$ gives

(a) $\mathbf{x}^{(1)} = (2, 4.5, 3)^t$ (b) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$ (c) $\mathbf{x}^{(1)} = (4, 9, 6)^t$ (d) $\mathbf{x}^{(1)} = (2, 5.5, 5.75)^t$ (e) $\mathbf{x}^{(1)} = (2, 5.5, 3)^t$

CODE04

3. The linear finite difference scheme applied to the problem

$$y'' - y' - 2y = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}, \qquad y(0) = -0.3, \ y(\frac{\pi}{2}) = -0.1,$$

with $\frac{\pi}{8}$ results in the system Aw = b, where

$$\begin{array}{l} \text{(a)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.2228 \\ -0.1090 \\ -0.1786 \end{bmatrix} \\ \text{(b)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1394 \end{bmatrix} \\ \text{(c)} \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1786 \end{bmatrix} \\ \text{(d)} \ A = \begin{bmatrix} 1.6916 & -1.1963 & 0 \\ -0.8037 & 1.6916 & -1.1963 \\ 0 & -0.8037 & 1.6916 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.5014 \\ -0.1090 \\ -0.1786 \end{bmatrix} \\ \text{(e)} \ A = \begin{bmatrix} 2.3084 & -0.8037 & 0 \\ -1.1963 & 2.3084 & -0.8037 \\ 0 & -1.1963 & 2.3084 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -0.3836 \\ -0.1090 \\ -0.1394 \end{bmatrix} \end{aligned}$$

4. The singular values of the matrix
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 are

(a)
$$s_1 = 2.6762$$
, $s_2 = 0.8377$
(b) $s_1 = 1.2644$, $s_2 = 0.7380$
(c) $s_1 = 2.5959$, $s_2 = 1.1231$
(d) $s_1 = 2.6762$, $s_2 = 0.9153$
(e) $s_1 = 7.1623$, $s_2 = 0.8377$

5. Using the composite trapezoidal rule with n = 4,

$$\int_0^2 \frac{1}{x+4} dx \approx$$

- (a) 0.2031
- (b) 0.3914
- (c) 0.4062
- (d) 0.4055
- (e) 0.8124

6. Consider $f(x) = x - 10\pi + 6e$. Using three-digit rounding arithmetic, $f(-3/62) \approx$

- (a) 14.8
- (b) -15.2
- (c) 14.9
- (d) 15.0
- (e) -15.1

Page 4 of 10

CODE04

7. Let $\mathbf{x} = (x_1, x_2)^t$ and $\mathbf{x}^{(1)}$ be the first iterate of the Newton's method in solving

$$4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 = -8$$
$$-\frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 = -8,$$

with
$$\mathbf{x}^{(0)} = (0, 0)^t$$
. Then $\mathbf{x}^{(1)} =$

- (a) $(1.6, 0.56)^t$ (b) $(0.4, 1.76)^t$
- (c) $(0.4, -1.44)^t$
- (d) $(-0.4, 1.76)^t$
- (e) $(0.4, 1.92)^t$

8. Consider the following data

x	1.0	2.0	3.0
y	2.3551	l	3.1116

Let $f(x) = 2.1021e^{ax}$ by a least square curve fitted to the data. Then, a =

- (a) -1.9711
- (b) 0.1392
- (c) -0.9723
- (d) 1.1495
- (e) 0.3782

9. Consider the following data

x	0	1.0	2.0]
y	0.2849	0.8934	β	ŀ

Let $P_2(x) = a_2x^2 + 0.5255x + a_0$ be a least square polynomial fitted to the data. Then, $P_2(1.75) =$

- (a) 2.0124
- (b) 1.6679
- (c) 2.2457
- (d) 1.4587
- (e) 1.8728

10. Consider the linear system

 $6x_1 + 3x_2 = 4$ $2x_1 - 3x_2 = 1$

Let $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ be the first and second iteration, respectively, of the conjugate gradient method using the initial guess $\mathbf{x}^{(0)} = (1, -1)^t$ and the conjugate directions $\mathbf{v}^{(1)} = (1, 0)^t$ and $\mathbf{v}^{(2)} = (-1, 2)^t$. Then, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(2)}\|_{\infty} =$

- (a) 1.1667
- (b) 0.5417
- (c) 1.0833
- (d) 1.000
- (e) 0.6250

- 11. Let $P_2(x)$ be the second Taylor polynomial for $f(x) = \ln(x+1)$ about $x_0 = 0$. Then the smallest upper bound, by the Taylor theorem, for $|f(0.5) - P_2(0.5)|$ is
 - (a) 1.25×10^{-1}
 - (b) 4.17×10^{-2}
 - (c) 8.34×10^{-2}
 - (d) 2.08×10^{-2}
 - (e) 3.33×10^{-1}

12. Using the secant method with $p_0 = -1$ and $p_1 = 0$ to approximate the solution of $-x^3 = \cos(x)$, we get $p_3 =$

- (a) -0.7523
- (b) -0.8655
- (c) -0.8803
- (d) -1.2521
- (e) -0.8657

13. Consider the initial value problem

$$y' = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5.$$

Using the Euler method with $n = 4, y(1.0) \approx$

- (a) 1.6875
- (b) 3.3750
- (c) 4.4375
- (d) 1.1250
- (e) 2.2500

14. Using the Gram-Schmidt process to find a set of orthogonal vectors u_1, u_2, u_3 from the linearly independent vectors

$$\mathbf{v}_1 = (2, -1, 1), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (0, 2, 0),$$

gives

(a)
$$\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (-\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$$

(b) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$
(c) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, -\frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(d) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (2, -\frac{1}{3}, 1)^t$
(e) $\mathbf{u}_1 = (2, -1, 1)^t, \mathbf{u}_2 = (0, \frac{1}{2}, \frac{1}{2})^t, \mathbf{u}_3 = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})^t$

- 15. Let A be a real matrix with m rows and n column, $m \ge n$ and $A = USV^t$. Which of the following statements is not always true
 - (a) U and V are always invertible
 - (b) U is $m \times m$ and V is $n \times n$
 - (c) U and V are orthogonal
 - (d) All entries of S are non-negative
 - (e) S is invertible

16. The matrix
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$$
 has the singular value decomposition $A = USV^t$, with

$$S = \begin{bmatrix} 3.1623 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

The first two columns of the matrix U obtained using S and V are:

(a)
$$\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$$
, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$
(b) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (-0.5, -0.5, -0.5, 0.5)^t$
(c) $\mathbf{u}_1 = (0.6325, 0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5)^t$
(d) $\mathbf{u}_1 = (0.6325, -0.3162, 0.3162, 0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, -0.5)^t$
(e) $\mathbf{u}_1 = (-0.6325, 0.3162, -0.3162, -0.6325)^t$, $\mathbf{u}_2 = (0.5, 0.5, 0.5, 0.5, 0.5)^t$

CODE04

17. Consider the matrix A and the vector **b**:
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -1 \\ -2 & -3 & 4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

Let A = LU be a factorization of A, where L is lower triangle matrix with 1 on its diagonal and U is upper triangle. The solution of system $L\mathbf{y} = \mathbf{b}$, where $\mathbf{y} = (y_1, y_2, y_3)^t$ is

- (a) $\mathbf{y} = (0.1667, 0.667, 0.3333)^t$
- (b) $\mathbf{y} = (2, -5, 3)^t$
- (c) $\mathbf{y} = (-3, 3, 1)^t$
- (d) $\mathbf{y} = (-2, 5, -3)^t$
- (e) $\mathbf{y} = (2, -5, -1)^t$

- 18. Let $P_2(x)$ be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose the coefficient of x^2 in $P_2(x)$ is 6, then y =
 - (a) 8
 - (b) 4.5
 - (c) 2.5
 - (d) 16
 - (e) 10

19. Consider the boundary value problem

$$y'' = 4(y - x), \qquad 0 \le x \le 1, \qquad y(0) = 0, \ y(1) = 2.$$

Applying the linear finite difference method with $h = \frac{1}{3}$

(a) $y(\frac{1}{3}) = 0.5343$, $y(\frac{2}{3}) = 1.1580$ (b) $y(\frac{1}{3}) = 1.7797$, $y(\frac{2}{3}) = 2.6203$ (c) $y(\frac{1}{3}) = 0.2696$, $y(\frac{2}{3}) = 0.8073$ (d) $y(\frac{1}{3}) = 1.0377$, $y(\frac{2}{3}) = 1.7623$ (e) $y(\frac{1}{3}) = 0.3904$, $y(\frac{2}{3}) = 0.8060$

20. Consider the problem

 $e^x - x^2 + 3x - 2 = 0, \quad -1 \le x \le 2.$

The minimum number of iteration required by the bisection method to guarantee $10^{-8}~{\rm accuracy}$ is

- (a) 27
- (b) 15
- (c) 35
- (d) 29
- (e) 25

Math 371, 242, Final Exam

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	D 19	В 11	D 11	С 18
2	А	В 2	С 7	Е 15	D 9
3	A	Е 11	D 9	С 10	B 20
4	А	E 1	B 4	$\mathrm{C}_{_{20}}$	D 14
5	А	В 9	В 6	В 16	С 6
6	А	Е 16	D 3	В 12	E 2
7	А	D 18	D 10	D 6	В 17
8	А	С 4	E ₈	Вз	В 11
9	А	A 5	D 19	A 1	D 12
10	А	C 17	E 20	Е 19	С 10
11	A	D 14	В 13	С 4	В 1
12	А	С 7	A 16	D 14	D 4
13	A	C 20	С 1	E 17	E ₇
14	А	D 10	В 14	В 2	Е 13
15	А	D 3	В 15	В 8	Е 16
16	А	В 12	С 5	B 5	A 15
17	А	D 15	С 17	Е 18	В 8
18	А	D 6	E 2	A 13	D 5
19	А	В 8	A 18	D ₇	A 19
20	А	D 13	Е 12	В 9	D 3

Answer Counts

V	A	В	С	D	Е
1	1	4	4	8	3
2	2	6	4	4	4
3	2	7	3	4	4
4	2	5	3	6	4