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1. Let P2(x) be the second Taylor polynomial for f(x) = ln(x+1) about x0 = 0. Then
the smallest upper bound, by the Taylor theorem, for |f(0.5)− P2(0.5)| is

(a) 4.17× 10−2 (correct)

(b) 1.25× 10−1

(c) 3.33× 10−1

(d) 2.08× 10−2

(e) 8.34× 10−2

2. Consider f(x) = x− 10π+6e. Using three-digit rounding arithmetic, f(−3/62) ≈

(a) −15.1 (correct)

(b) −15.2

(c) 15.0

(d) 14.9

(e) 14.8

78.5714


64.2857


Average

Average
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3. Consider the problem

ex − x2 + 3x− 2 = 0, −1 ≤ x ≤ 2.

The minimum number of iteration required by the bisection method to guarantee
10−8 accuracy is

(a) 29 (correct)

(b) 27

(c) 35

(d) 25

(e) 15

4. Using the secant method with p0 = −1 and p1 = 0 to approximate the solution of

−x3 = cos(x), we get p3 =

(a) −1.2521 (correct)

(b) −0.7523

(c) −0.8803

(d) −0.8657

(e) −0.8655

67.8571


71.4286


Average

Average
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5. Let P2(x) be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose
the coefficient of x2 in P2(x) is 6, then y =

(a) 16 (correct)

(b) 10
(c) 8
(d) 2.5
(e) 4.5

6. Using the composite trapezoidal rule with n = 4,∫ 2

0

1

x+ 4
dx ≈

(a) 0.4062 (correct)

(b) 0.8124

(c) 0.2031

(d) 0.4055

(e) 0.3914

75


75


Average

Average
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7. Consider the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Using the Euler method with n = 4, y(1.0) ≈

(a) 2.2500 (correct)

(b) 3.3750

(c) 4.4375

(d) 1.1250

(e) 1.6875

8. Consider the matrix A and the vector b: A =

 2 3 −1
4 4 −1
−2 −3 4

 , b =

 2
−1
1

 .

Let A = LU be a factorization of A, where L is lower triangle matrix with 1
on its diagonal and U is upper triangle. The solution of system Ly = b, where
y = (y1, y2, y3)

t is

(a) y = (2,−5, 3)t (correct)

(b) y = (−3, 3, 1)t

(c) y = (0.1667, 0.667, 0.3333)t

(d) y = (−2, 5,−3)t

(e) y = (2,−5,−1)t

67.8571


46.4286


Average

Average
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9. The first iteration of the Gauss-Seidel method for solving the linear system

2x1 − x2 = 4

−x1 + 2x2 − x3 = 9

−x2 + 2x3 = 6

using the initial guess x(0) = (0, 0, 0)t gives

(a) x(1) = (2, 5.5, 5.75)t (correct)

(b) x(1) = (2, 4.5, 3)t

(c) x(1) = (4, 9, 6)t

(d) x(1) = (2, 5.5, 3)t

(e) x(1) = (2, 5.5, 3)t

10. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) and x(2) be the first and second iteration, respectively, of the conjugate
gradient method using the initial guess x(0) = (1,−1)t and the conjugate directions
v(1) = (1, 0)t and v(2) = (−1, 2)t. Then, ∥x(1) − x(2)∥∞ =

(a) 1.0833 (correct)

(b) 1.1667

(c) 0.5417

(d) 1.000

(e) 0.6250

85.7143


50


Average

Average
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11. Consider the following data

x 1.0 2.0 3.0
y 2.3551 ℓ 3.1116 .

Let f(x) = 2.1021eax by a least square curve fitted to the data. Then, a =

(a) 0.1392 (correct)

(b) 1.1495

(c) −1.9711

(d) 0.3782

(e) −0.9723

12. Consider the following data

x 0 1.0 2.0
y 0.2849 0.8934 β

.

Let P2(x) = a2x
2 + 0.5255x + a0 be a least square polynomial fitted to the data.

Then, P2(1.75) =

(a) 1.4587 (correct)

(b) 1.6679

(c) 1.8728

(d) 2.0124

(e) 2.2457

53.5714


75


Average

Average
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13. Using the Gram-Schmidt process to find a set of orthogonal vectors u1, u2, u3 from
the linearly independent vectors

v1 = (2,−1, 1), v2 = (1, 0, 1), v3 = (0, 2, 0),

gives

(a) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t (correct)

(b) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(c) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (2,−1
3 , 1)

t

(d) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (2,−1
3 , 1)

t

(e) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (−2
3 ,

2
3 ,−

2
3)

t

14. The singular values of the matrix

2 1
1 1
0 1

 are

(a) s1 = 2.6762, s2 = 0.9153 (correct)

(b) s1 = 2.5959, s2 = 1.1231

(c) s1 = 1.2644, s2 = 0.7380

(d) s1 = 7.1623, s2 = 0.8377

(e) s1 = 2.6762, s2 = 0.8377

67.8571


82.1429


Average

Average
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15. The matrix A =


2 1
−1 1
1 1
2 −1

 has the singular value decomposition A = USV t, with

S =


3.1623 0

0 2
0 0
0 0

 , V =

[
−1 0
0 −1

]
.

The first two columns of the matrix U obtained using S and V are:

(a) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t (correct)

(b) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(c) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(d) u1 = (0.6325,−0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5,−0.5)t

(e) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

16. Let A be a real matrix with m rows and n column, m ≥ n and A = USV t. Which
of the following statements is not always true

(a) S is invertible (correct)

(b) U and V are orthogonal
(c) U and V are always invertible
(d) All entries of S are non-negative
(e) U is m×m and V is n× n

64.2857


71.4286


Average

Average
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17. Let x = (x1, x2)
t and x(1) be the first iterate of the Newton’s method in solving

4x21 − 20x1 +
1

4
x22 = −8

−1

2
x1x

2
2 + 2x1 − 5x2 = −8,

with x(0) = (0, 0)t. Then x(1) =

(a) (0.4, 1.76)t (correct)

(b) (−0.4, 1.76)t

(c) (0.4, 1.92)t

(d) (1.6, 0.56)t

(e) (0.4,−1.44)t

18. Let x = (x1, x2)
t and x(1) be the first iterate of the steepest descent method in

solving the system of equations

3x21 − x22 = 0

3x1x
2
2 − x31 = 1,

with x(0) = (1, 12)
t, and α = 0.01. Then x(1) =

(a) (0.6138, 0.63)t (correct)

(b) (0.6138, 0.52)t

(c) (0.6589, 0.57)t

(d) (0.6589, 0.63)t

(e) (0.7038, 0.51)t

75


57.1429


Average

Average
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19. Consider the boundary value problem

y′′ = 4(y − x), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 2.

Applying the linear finite difference method with h = 1
3

(a) y(13) = 0.5343, y(23) = 1.1580 (correct)

(b) y(13) = 0.3904, y(23) = 0.8060

(c) y(13) = 0.2696, y(23) = 0.8073

(d) y(13) = 1.0377, y(23) = 1.7623

(e) y(13) = 1.7797, y(23) = 2.6203

20. The linear finite difference scheme applied to the problem

y′′ − y′ − 2y = cos(x), 0 ≤ x ≤ π

2
, y(0) = −0.3, y(

π

2
) = −0.1,

with π
8 results in the system Aw = b, where

(a) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.5014
−0.1090
−0.1394

 (correct)

(b) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.2228
−0.1090
−0.1786


(c) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.3836
−0.1090
−0.1786


(d) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.3836
−0.1090
−0.1786


(e) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.5014
−0.1090
−0.1394



57.1429


53.5714


Average

Average
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1. Consider the boundary value problem

y′′ = 4(y − x), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 2.

Applying the linear finite difference method with h = 1
3

(a) y(13) = 1.7797, y(23) = 2.6203

(b) y(13) = 1.0377, y(23) = 1.7623

(c) y(13) = 0.2696, y(23) = 0.8073

(d) y(13) = 0.5343, y(23) = 1.1580

(e) y(13) = 0.3904, y(23) = 0.8060

2. Consider f(x) = x− 10π+6e. Using three-digit rounding arithmetic, f(−3/62) ≈

(a) −15.2

(b) −15.1

(c) 14.9

(d) 14.8

(e) 15.0
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3. Consider the following data

x 1.0 2.0 3.0
y 2.3551 ℓ 3.1116 .

Let f(x) = 2.1021eax by a least square curve fitted to the data. Then, a =

(a) −1.9711

(b) 0.3782

(c) 1.1495

(d) −0.9723

(e) 0.1392

4. Let P2(x) be the second Taylor polynomial for f(x) = ln(x+1) about x0 = 0. Then
the smallest upper bound, by the Taylor theorem, for |f(0.5)− P2(0.5)| is

(a) 8.34× 10−2

(b) 1.25× 10−1

(c) 2.08× 10−2

(d) 3.33× 10−1

(e) 4.17× 10−2
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5. The first iteration of the Gauss-Seidel method for solving the linear system

2x1 − x2 = 4

−x1 + 2x2 − x3 = 9

−x2 + 2x3 = 6

using the initial guess x(0) = (0, 0, 0)t gives

(a) x(1) = (2, 4.5, 3)t

(b) x(1) = (2, 5.5, 5.75)t

(c) x(1) = (2, 5.5, 3)t

(d) x(1) = (2, 5.5, 3)t

(e) x(1) = (4, 9, 6)t

6. Let A be a real matrix with m rows and n column, m ≥ n and A = USV t. Which
of the following statements is not always true

(a) U and V are orthogonal
(b) U and V are always invertible
(c) U is m×m and V is n× n

(d) All entries of S are non-negative
(e) S is invertible
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7. Let x = (x1, x2)
t and x(1) be the first iterate of the steepest descent method in

solving the system of equations

3x21 − x22 = 0

3x1x
2
2 − x31 = 1,

with x(0) = (1, 12)
t, and α = 0.01. Then x(1) =

(a) (0.6589, 0.57)t

(b) (0.6589, 0.63)t

(c) (0.6138, 0.52)t

(d) (0.6138, 0.63)t

(e) (0.7038, 0.51)t

8. Using the secant method with p0 = −1 and p1 = 0 to approximate the solution of

−x3 = cos(x), we get p3 =

(a) −0.7523

(b) −0.8657

(c) −1.2521

(d) −0.8803

(e) −0.8655
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9. Let P2(x) be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose
the coefficient of x2 in P2(x) is 6, then y =

(a) 16
(b) 8
(c) 2.5
(d) 10
(e) 4.5

10. Let x = (x1, x2)
t and x(1) be the first iterate of the Newton’s method in solving

4x21 − 20x1 +
1

4
x22 = −8

−1

2
x1x

2
2 + 2x1 − 5x2 = −8,

with x(0) = (0, 0)t. Then x(1) =

(a) (0.4, 1.92)t

(b) (0.4,−1.44)t

(c) (0.4, 1.76)t

(d) (1.6, 0.56)t

(e) (−0.4, 1.76)t
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11. The singular values of the matrix

2 1
1 1
0 1

 are

(a) s1 = 7.1623, s2 = 0.8377

(b) s1 = 2.5959, s2 = 1.1231

(c) s1 = 2.6762, s2 = 0.8377

(d) s1 = 2.6762, s2 = 0.9153

(e) s1 = 1.2644, s2 = 0.7380

12. Consider the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Using the Euler method with n = 4, y(1.0) ≈

(a) 4.4375

(b) 1.1250

(c) 2.2500

(d) 1.6875

(e) 3.3750
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13. The linear finite difference scheme applied to the problem

y′′ − y′ − 2y = cos(x), 0 ≤ x ≤ π

2
, y(0) = −0.3, y(

π

2
) = −0.1,

with π
8 results in the system Aw = b, where

(a) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.3836
−0.1090
−0.1786


(b) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.3836
−0.1090
−0.1786


(c) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.5014
−0.1090
−0.1394


(d) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.2228
−0.1090
−0.1786


(e) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.5014
−0.1090
−0.1394



14. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) and x(2) be the first and second iteration, respectively, of the conjugate
gradient method using the initial guess x(0) = (1,−1)t and the conjugate directions
v(1) = (1, 0)t and v(2) = (−1, 2)t. Then, ∥x(1) − x(2)∥∞ =

(a) 1.000

(b) 1.1667

(c) 0.5417

(d) 1.0833

(e) 0.6250
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15. Consider the problem

ex − x2 + 3x− 2 = 0, −1 ≤ x ≤ 2.

The minimum number of iteration required by the bisection method to guarantee
10−8 accuracy is

(a) 15

(b) 25

(c) 27

(d) 29

(e) 35

16. Consider the following data

x 0 1.0 2.0
y 0.2849 0.8934 β

.

Let P2(x) = a2x
2 + 0.5255x + a0 be a least square polynomial fitted to the data.

Then, P2(1.75) =

(a) 2.2457

(b) 1.4587

(c) 1.6679

(d) 1.8728

(e) 2.0124
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17. The matrix A =


2 1
−1 1
1 1
2 −1

 has the singular value decomposition A = USV t, with

S =


3.1623 0

0 2
0 0
0 0

 , V =

[
−1 0
0 −1

]
.

The first two columns of the matrix U obtained using S and V are:

(a) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(b) u1 = (0.6325,−0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5,−0.5)t

(c) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(d) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(e) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

18. Using the composite trapezoidal rule with n = 4,∫ 2

0

1

x+ 4
dx ≈

(a) 0.8124

(b) 0.4055

(c) 0.2031

(d) 0.4062

(e) 0.3914
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19. Consider the matrix A and the vector b: A =

 2 3 −1
4 4 −1
−2 −3 4

 , b =

 2
−1
1

 .

Let A = LU be a factorization of A, where L is lower triangle matrix with 1
on its diagonal and U is upper triangle. The solution of system Ly = b, where
y = (y1, y2, y3)

t is

(a) y = (0.1667, 0.667, 0.3333)t

(b) y = (2,−5, 3)t

(c) y = (2,−5,−1)t

(d) y = (−2, 5,−3)t

(e) y = (−3, 3, 1)t

20. Using the Gram-Schmidt process to find a set of orthogonal vectors u1, u2, u3 from
the linearly independent vectors

v1 = (2,−1, 1), v2 = (1, 0, 1), v3 = (0, 2, 0),

gives

(a) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (2,−1
3 , 1)

t

(b) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (−2
3 ,

2
3 ,−

2
3)

t

(c) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(d) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(e) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (2,−1
3 , 1)

t
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1. Consider the following data

x 1.0 2.0 3.0
y 2.3551 ℓ 3.1116 .

Let f(x) = 2.1021eax by a least square curve fitted to the data. Then, a =

(a) −0.9723

(b) 0.1392

(c) 1.1495

(d) 0.3782

(e) −1.9711

2. Consider the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Using the Euler method with n = 4, y(1.0) ≈

(a) 3.3750

(b) 4.4375

(c) 2.2500

(d) 1.6875

(e) 1.1250
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3. The first iteration of the Gauss-Seidel method for solving the linear system

2x1 − x2 = 4

−x1 + 2x2 − x3 = 9

−x2 + 2x3 = 6

using the initial guess x(0) = (0, 0, 0)t gives

(a) x(1) = (4, 9, 6)t

(b) x(1) = (2, 5.5, 3)t

(c) x(1) = (2, 5.5, 3)t

(d) x(1) = (2, 5.5, 5.75)t

(e) x(1) = (2, 4.5, 3)t

4. Using the secant method with p0 = −1 and p1 = 0 to approximate the solution of

−x3 = cos(x), we get p3 =

(a) −0.8657

(b) −1.2521

(c) −0.8803

(d) −0.8655

(e) −0.7523
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5. Using the composite trapezoidal rule with n = 4,∫ 2

0

1

x+ 4
dx ≈

(a) 0.2031

(b) 0.4062

(c) 0.4055

(d) 0.3914

(e) 0.8124

6. Consider the problem

ex − x2 + 3x− 2 = 0, −1 ≤ x ≤ 2.

The minimum number of iteration required by the bisection method to guarantee
10−8 accuracy is

(a) 27

(b) 15

(c) 35

(d) 29

(e) 25
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7. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) and x(2) be the first and second iteration, respectively, of the conjugate
gradient method using the initial guess x(0) = (1,−1)t and the conjugate directions
v(1) = (1, 0)t and v(2) = (−1, 2)t. Then, ∥x(1) − x(2)∥∞ =

(a) 0.6250

(b) 1.000

(c) 1.1667

(d) 1.0833

(e) 0.5417

8. Consider the matrix A and the vector b: A =

 2 3 −1
4 4 −1
−2 −3 4

 , b =

 2
−1
1

 .

Let A = LU be a factorization of A, where L is lower triangle matrix with 1
on its diagonal and U is upper triangle. The solution of system Ly = b, where
y = (y1, y2, y3)

t is

(a) y = (0.1667, 0.667, 0.3333)t

(b) y = (2,−5,−1)t

(c) y = (−2, 5,−3)t

(d) y = (−3, 3, 1)t

(e) y = (2,−5, 3)t
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9. Consider the boundary value problem

y′′ = 4(y − x), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 2.

Applying the linear finite difference method with h = 1
3

(a) y(13) = 0.3904, y(23) = 0.8060

(b) y(13) = 0.2696, y(23) = 0.8073

(c) y(13) = 1.7797, y(23) = 2.6203

(d) y(13) = 0.5343, y(23) = 1.1580

(e) y(13) = 1.0377, y(23) = 1.7623

10. The linear finite difference scheme applied to the problem

y′′ − y′ − 2y = cos(x), 0 ≤ x ≤ π

2
, y(0) = −0.3, y(

π

2
) = −0.1,

with π
8 results in the system Aw = b, where

(a) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.5014
−0.1090
−0.1394


(b) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.3836
−0.1090
−0.1786


(c) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.2228
−0.1090
−0.1786


(d) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.3836
−0.1090
−0.1786


(e) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.5014
−0.1090
−0.1394


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11. Using the Gram-Schmidt process to find a set of orthogonal vectors u1, u2, u3 from
the linearly independent vectors

v1 = (2,−1, 1), v2 = (1, 0, 1), v3 = (0, 2, 0),

gives

(a) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (−2
3 ,

2
3 ,−

2
3)

t

(b) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(c) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (2,−1
3 , 1)

t

(d) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (2,−1
3 , 1)

t

(e) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

12. Let A be a real matrix with m rows and n column, m ≥ n and A = USV t. Which
of the following statements is not always true

(a) S is invertible
(b) U is m×m and V is n× n

(c) All entries of S are non-negative
(d) U and V are orthogonal
(e) U and V are always invertible
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13. Let P2(x) be the second Taylor polynomial for f(x) = ln(x+1) about x0 = 0. Then
the smallest upper bound, by the Taylor theorem, for |f(0.5)− P2(0.5)| is

(a) 2.08× 10−2

(b) 8.34× 10−2

(c) 4.17× 10−2

(d) 3.33× 10−1

(e) 1.25× 10−1

14. The singular values of the matrix

2 1
1 1
0 1

 are

(a) s1 = 7.1623, s2 = 0.8377

(b) s1 = 2.6762, s2 = 0.9153

(c) s1 = 1.2644, s2 = 0.7380

(d) s1 = 2.6762, s2 = 0.8377

(e) s1 = 2.5959, s2 = 1.1231
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15. The matrix A =


2 1
−1 1
1 1
2 −1

 has the singular value decomposition A = USV t, with

S =


3.1623 0

0 2
0 0
0 0

 , V =

[
−1 0
0 −1

]
.

The first two columns of the matrix U obtained using S and V are:

(a) u1 = (0.6325,−0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5,−0.5)t

(b) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(c) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(d) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(e) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

16. Let P2(x) be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose
the coefficient of x2 in P2(x) is 6, then y =

(a) 10
(b) 4.5
(c) 16
(d) 2.5
(e) 8
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17. Let x = (x1, x2)
t and x(1) be the first iterate of the Newton’s method in solving

4x21 − 20x1 +
1

4
x22 = −8

−1

2
x1x

2
2 + 2x1 − 5x2 = −8,

with x(0) = (0, 0)t. Then x(1) =

(a) (0.4, 1.92)t

(b) (1.6, 0.56)t

(c) (0.4, 1.76)t

(d) (−0.4, 1.76)t

(e) (0.4,−1.44)t

18. Consider f(x) = x− 10π+6e. Using three-digit rounding arithmetic, f(−3/62) ≈

(a) −15.2

(b) 15.0

(c) 14.8

(d) 14.9

(e) −15.1
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19. Let x = (x1, x2)
t and x(1) be the first iterate of the steepest descent method in

solving the system of equations

3x21 − x22 = 0

3x1x
2
2 − x31 = 1,

with x(0) = (1, 12)
t, and α = 0.01. Then x(1) =

(a) (0.6138, 0.63)t

(b) (0.6589, 0.57)t

(c) (0.6138, 0.52)t

(d) (0.7038, 0.51)t

(e) (0.6589, 0.63)t

20. Consider the following data

x 0 1.0 2.0
y 0.2849 0.8934 β

.

Let P2(x) = a2x
2 + 0.5255x + a0 be a least square polynomial fitted to the data.

Then, P2(1.75) =

(a) 2.0124

(b) 2.2457

(c) 1.8728

(d) 1.6679

(e) 1.4587
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1. Consider the following data

x 1.0 2.0 3.0
y 2.3551 ℓ 3.1116 .

Let f(x) = 2.1021eax by a least square curve fitted to the data. Then, a =

(a) 0.3782

(b) 1.1495

(c) −1.9711

(d) 0.1392

(e) −0.9723

2. The matrix A =


2 1
−1 1
1 1
2 −1

 has the singular value decomposition A = USV t, with

S =


3.1623 0

0 2
0 0
0 0

 , V =

[
−1 0
0 −1

]
.

The first two columns of the matrix U obtained using S and V are:

(a) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(b) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(c) u1 = (0.6325,−0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5,−0.5)t

(d) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(e) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t
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3. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) and x(2) be the first and second iteration, respectively, of the conjugate
gradient method using the initial guess x(0) = (1,−1)t and the conjugate directions
v(1) = (1, 0)t and v(2) = (−1, 2)t. Then, ∥x(1) − x(2)∥∞ =

(a) 1.1667

(b) 1.000

(c) 1.0833

(d) 0.6250

(e) 0.5417

4. The linear finite difference scheme applied to the problem

y′′ − y′ − 2y = cos(x), 0 ≤ x ≤ π

2
, y(0) = −0.3, y(

π

2
) = −0.1,

with π
8 results in the system Aw = b, where

(a) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.3836
−0.1090
−0.1786


(b) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.2228
−0.1090
−0.1786


(c) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.5014
−0.1090
−0.1394


(d) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.5014
−0.1090
−0.1394


(e) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.3836
−0.1090
−0.1786


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5. Let A be a real matrix with m rows and n column, m ≥ n and A = USV t. Which
of the following statements is not always true

(a) U and V are orthogonal
(b) S is invertible
(c) All entries of S are non-negative
(d) U is m×m and V is n× n

(e) U and V are always invertible

6. Consider the following data

x 0 1.0 2.0
y 0.2849 0.8934 β

.

Let P2(x) = a2x
2 + 0.5255x + a0 be a least square polynomial fitted to the data.

Then, P2(1.75) =

(a) 1.6679

(b) 1.4587

(c) 2.2457

(d) 2.0124

(e) 1.8728
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7. Using the composite trapezoidal rule with n = 4,∫ 2

0

1

x+ 4
dx ≈

(a) 0.8124

(b) 0.2031

(c) 0.3914

(d) 0.4062

(e) 0.4055

8. Consider the problem

ex − x2 + 3x− 2 = 0, −1 ≤ x ≤ 2.

The minimum number of iteration required by the bisection method to guarantee
10−8 accuracy is

(a) 35

(b) 29

(c) 25

(d) 27

(e) 15
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9. Let P2(x) be the second Taylor polynomial for f(x) = ln(x+1) about x0 = 0. Then
the smallest upper bound, by the Taylor theorem, for |f(0.5)− P2(0.5)| is

(a) 4.17× 10−2

(b) 8.34× 10−2

(c) 2.08× 10−2

(d) 1.25× 10−1

(e) 3.33× 10−1

10. Consider the boundary value problem

y′′ = 4(y − x), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 2.

Applying the linear finite difference method with h = 1
3

(a) y(13) = 0.3904, y(23) = 0.8060

(b) y(13) = 1.0377, y(23) = 1.7623

(c) y(13) = 0.2696, y(23) = 0.8073

(d) y(13) = 1.7797, y(23) = 2.6203

(e) y(13) = 0.5343, y(23) = 1.1580
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11. Using the secant method with p0 = −1 and p1 = 0 to approximate the solution of

−x3 = cos(x), we get p3 =

(a) −0.8657

(b) −0.8803

(c) −1.2521

(d) −0.8655

(e) −0.7523

12. The singular values of the matrix

2 1
1 1
0 1

 are

(a) s1 = 7.1623, s2 = 0.8377

(b) s1 = 2.6762, s2 = 0.8377

(c) s1 = 1.2644, s2 = 0.7380

(d) s1 = 2.6762, s2 = 0.9153

(e) s1 = 2.5959, s2 = 1.1231
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13. Let x = (x1, x2)
t and x(1) be the first iterate of the Newton’s method in solving

4x21 − 20x1 +
1

4
x22 = −8

−1

2
x1x

2
2 + 2x1 − 5x2 = −8,

with x(0) = (0, 0)t. Then x(1) =

(a) (0.4,−1.44)t

(b) (−0.4, 1.76)t

(c) (0.4, 1.92)t

(d) (1.6, 0.56)t

(e) (0.4, 1.76)t

14. Consider f(x) = x− 10π+6e. Using three-digit rounding arithmetic, f(−3/62) ≈

(a) −15.2

(b) −15.1

(c) 14.8

(d) 14.9

(e) 15.0
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15. Consider the matrix A and the vector b: A =

 2 3 −1
4 4 −1
−2 −3 4

 , b =

 2
−1
1

 .

Let A = LU be a factorization of A, where L is lower triangle matrix with 1
on its diagonal and U is upper triangle. The solution of system Ly = b, where
y = (y1, y2, y3)

t is

(a) y = (−3, 3, 1)t

(b) y = (2,−5, 3)t

(c) y = (−2, 5,−3)t

(d) y = (0.1667, 0.667, 0.3333)t

(e) y = (2,−5,−1)t

16. Let P2(x) be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose
the coefficient of x2 in P2(x) is 6, then y =

(a) 10
(b) 16
(c) 4.5
(d) 2.5
(e) 8
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17. Let x = (x1, x2)
t and x(1) be the first iterate of the steepest descent method in

solving the system of equations

3x21 − x22 = 0

3x1x
2
2 − x31 = 1,

with x(0) = (1, 12)
t, and α = 0.01. Then x(1) =

(a) (0.6589, 0.63)t

(b) (0.6589, 0.57)t

(c) (0.7038, 0.51)t

(d) (0.6138, 0.52)t

(e) (0.6138, 0.63)t

18. Using the Gram-Schmidt process to find a set of orthogonal vectors u1, u2, u3 from
the linearly independent vectors

v1 = (2,−1, 1), v2 = (1, 0, 1), v3 = (0, 2, 0),

gives

(a) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(b) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (2,−1
3 , 1)

t

(c) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (2,−1
3 , 1)

t

(d) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (−2
3 ,

2
3 ,−

2
3)

t

(e) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t
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19. Consider the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Using the Euler method with n = 4, y(1.0) ≈

(a) 4.4375

(b) 1.6875

(c) 3.3750

(d) 2.2500

(e) 1.1250

20. The first iteration of the Gauss-Seidel method for solving the linear system

2x1 − x2 = 4

−x1 + 2x2 − x3 = 9

−x2 + 2x3 = 6

using the initial guess x(0) = (0, 0, 0)t gives

(a) x(1) = (2, 5.5, 3)t

(b) x(1) = (2, 5.5, 5.75)t

(c) x(1) = (2, 5.5, 3)t

(d) x(1) = (4, 9, 6)t

(e) x(1) = (2, 4.5, 3)t
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1. Let x = (x1, x2)
t and x(1) be the first iterate of the steepest descent method in

solving the system of equations

3x21 − x22 = 0

3x1x
2
2 − x31 = 1,

with x(0) = (1, 12)
t, and α = 0.01. Then x(1) =

(a) (0.7038, 0.51)t

(b) (0.6138, 0.52)t

(c) (0.6138, 0.63)t

(d) (0.6589, 0.63)t

(e) (0.6589, 0.57)t

2. The first iteration of the Gauss-Seidel method for solving the linear system

2x1 − x2 = 4

−x1 + 2x2 − x3 = 9

−x2 + 2x3 = 6

using the initial guess x(0) = (0, 0, 0)t gives

(a) x(1) = (2, 4.5, 3)t

(b) x(1) = (2, 5.5, 3)t

(c) x(1) = (4, 9, 6)t

(d) x(1) = (2, 5.5, 5.75)t

(e) x(1) = (2, 5.5, 3)t
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3. The linear finite difference scheme applied to the problem

y′′ − y′ − 2y = cos(x), 0 ≤ x ≤ π

2
, y(0) = −0.3, y(

π

2
) = −0.1,

with π
8 results in the system Aw = b, where

(a) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.2228
−0.1090
−0.1786


(b) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.5014
−0.1090
−0.1394


(c) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.3836
−0.1090
−0.1786


(d) A =

 1.6916 −1.1963 0
−0.8037 1.6916 −1.1963

0 −0.8037 1.6916

 , b =

−0.5014
−0.1090
−0.1394


(e) A =

 2.3084 −0.8037 0
−1.1963 2.3084 −0.8037

0 −1.1963 2.3084

 , b =

−0.3836
−0.1090
−0.1786



4. The singular values of the matrix

2 1
1 1
0 1

 are

(a) s1 = 2.6762, s2 = 0.8377

(b) s1 = 1.2644, s2 = 0.7380

(c) s1 = 2.5959, s2 = 1.1231

(d) s1 = 2.6762, s2 = 0.9153

(e) s1 = 7.1623, s2 = 0.8377
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5. Using the composite trapezoidal rule with n = 4,∫ 2

0

1

x+ 4
dx ≈

(a) 0.2031

(b) 0.3914

(c) 0.4062

(d) 0.4055

(e) 0.8124

6. Consider f(x) = x− 10π+6e. Using three-digit rounding arithmetic, f(−3/62) ≈

(a) 14.8

(b) −15.2

(c) 14.9

(d) 15.0

(e) −15.1
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7. Let x = (x1, x2)
t and x(1) be the first iterate of the Newton’s method in solving

4x21 − 20x1 +
1

4
x22 = −8

−1

2
x1x

2
2 + 2x1 − 5x2 = −8,

with x(0) = (0, 0)t. Then x(1) =

(a) (1.6, 0.56)t

(b) (0.4, 1.76)t

(c) (0.4,−1.44)t

(d) (−0.4, 1.76)t

(e) (0.4, 1.92)t

8. Consider the following data

x 1.0 2.0 3.0
y 2.3551 ℓ 3.1116 .

Let f(x) = 2.1021eax by a least square curve fitted to the data. Then, a =

(a) −1.9711

(b) 0.1392

(c) −0.9723

(d) 1.1495

(e) 0.3782
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9. Consider the following data

x 0 1.0 2.0
y 0.2849 0.8934 β

.

Let P2(x) = a2x
2 + 0.5255x + a0 be a least square polynomial fitted to the data.

Then, P2(1.75) =

(a) 2.0124

(b) 1.6679

(c) 2.2457

(d) 1.4587

(e) 1.8728

10. Consider the linear system

6x1 + 3x2 = 4

2x1 − 3x2 = 1

Let x(1) and x(2) be the first and second iteration, respectively, of the conjugate
gradient method using the initial guess x(0) = (1,−1)t and the conjugate directions
v(1) = (1, 0)t and v(2) = (−1, 2)t. Then, ∥x(1) − x(2)∥∞ =

(a) 1.1667

(b) 0.5417

(c) 1.0833

(d) 1.000

(e) 0.6250
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11. Let P2(x) be the second Taylor polynomial for f(x) = ln(x+1) about x0 = 0. Then
the smallest upper bound, by the Taylor theorem, for |f(0.5)− P2(0.5)| is

(a) 1.25× 10−1

(b) 4.17× 10−2

(c) 8.34× 10−2

(d) 2.08× 10−2

(e) 3.33× 10−1

12. Using the secant method with p0 = −1 and p1 = 0 to approximate the solution of

−x3 = cos(x), we get p3 =

(a) −0.7523

(b) −0.8655

(c) −0.8803

(d) −1.2521

(e) −0.8657
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13. Consider the initial value problem

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5.

Using the Euler method with n = 4, y(1.0) ≈

(a) 1.6875

(b) 3.3750

(c) 4.4375

(d) 1.1250

(e) 2.2500

14. Using the Gram-Schmidt process to find a set of orthogonal vectors u1, u2, u3 from
the linearly independent vectors

v1 = (2,−1, 1), v2 = (1, 0, 1), v3 = (0, 2, 0),

gives

(a) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (−2
3 ,

2
3 ,−

2
3)

t

(b) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t

(c) u1 = (2,−1, 1)t,u2 = (0,−1
2 ,

1
2)

t,u3 = (2,−1
3 , 1)

t

(d) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (2,−1
3 , 1)

t

(e) u1 = (2,−1, 1)t,u2 = (0, 12 ,
1
2)

t,u3 = (23 ,
2
3 ,−

2
3)

t
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15. Let A be a real matrix with m rows and n column, m ≥ n and A = USV t. Which
of the following statements is not always true

(a) U and V are always invertible
(b) U is m×m and V is n× n

(c) U and V are orthogonal
(d) All entries of S are non-negative
(e) S is invertible

16. The matrix A =


2 1
−1 1
1 1
2 −1

 has the singular value decomposition A = USV t, with

S =


3.1623 0

0 2
0 0
0 0

 , V =

[
−1 0
0 −1

]
.

The first two columns of the matrix U obtained using S and V are:

(a) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(b) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (−0.5,−0.5,−0.5, 0.5)t

(c) u1 = (0.6325, 0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t

(d) u1 = (0.6325,−0.3162, 0.3162, 0.6325)t, u2 = (0.5, 0.5, 0.5,−0.5)t

(e) u1 = (−0.6325, 0.3162,−0.3162,−0.6325)t, u2 = (0.5, 0.5, 0.5, 0.5)t
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17. Consider the matrix A and the vector b: A =

 2 3 −1
4 4 −1
−2 −3 4

 , b =

 2
−1
1

 .

Let A = LU be a factorization of A, where L is lower triangle matrix with 1
on its diagonal and U is upper triangle. The solution of system Ly = b, where
y = (y1, y2, y3)

t is

(a) y = (0.1667, 0.667, 0.3333)t

(b) y = (2,−5, 3)t

(c) y = (−3, 3, 1)t

(d) y = (−2, 5,−3)t

(e) y = (2,−5,−1)t

18. Let P2(x) be the interpolating polynomial for the data (0, y), (1, 3), (2, 2). Suppose
the coefficient of x2 in P2(x) is 6, then y =

(a) 8
(b) 4.5
(c) 2.5
(d) 16
(e) 10
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19. Consider the boundary value problem

y′′ = 4(y − x), 0 ≤ x ≤ 1, y(0) = 0, y(1) = 2.

Applying the linear finite difference method with h = 1
3

(a) y(13) = 0.5343, y(23) = 1.1580

(b) y(13) = 1.7797, y(23) = 2.6203

(c) y(13) = 0.2696, y(23) = 0.8073

(d) y(13) = 1.0377, y(23) = 1.7623

(e) y(13) = 0.3904, y(23) = 0.8060

20. Consider the problem

ex − x2 + 3x− 2 = 0, −1 ≤ x ≤ 2.

The minimum number of iteration required by the bisection method to guarantee
10−8 accuracy is

(a) 27

(b) 15

(c) 35

(d) 29

(e) 25
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Q MASTER CODE01 CODE02 CODE03 CODE04
1 A D 19 B 11 D 11 C 18

2 A B 2 C 7 E 15 D 9

3 A E 11 D 9 C 10 B 20

4 A E 1 B 4 C 20 D 14

5 A B 9 B 6 B 16 C 6

6 A E 16 D 3 B 12 E 2

7 A D 18 D 10 D 6 B 17

8 A C 4 E 8 B 3 B 11

9 A A 5 D 19 A 1 D 12

10 A C 17 E 20 E 19 C 10

11 A D 14 B 13 C 4 B 1

12 A C 7 A 16 D 14 D 4

13 A C 20 C 1 E 17 E 7

14 A D 10 B 14 B 2 E 13

15 A D 3 B 15 B 8 E 16

16 A B 12 C 5 B 5 A 15

17 A D 15 C 17 E 18 B 8

18 A D 6 E 2 A 13 D 5

19 A B 8 A 18 D 7 A 19

20 A D 13 E 12 B 9 D 3
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Answer Counts

V A B C D E
1 1 4 4 8 3
2 2 6 4 4 4
3 2 7 3 4 4
4 2 5 3 6 4




