King Fahd University of Petroleum and Minerals Information Technology Center Computing Services Section

Dept. of: Course: Semseter:	Math math371 242		First Maior Exam		
				Thursda	y, February 20, 2025
				Raw Score	% Score
Total no	o. of Students:	48	Course Mean:	54.48	77.83
Course	Std. Dev. :	11.5	Max. Score:	70	100
			Min. Score:	10	14.29

Average (%) of each question

77.0833
87.5000
85.4167
87.5000
70.8333
72.9167
66.6667
91.6667
75.0000
77.0833
85.4167
75.0000
72.9167
64.5833

Question with highest average Q8

Question with lowest average Q7 and Q14

1.	Given $f(x) = \sqrt{x+1}$.	Using second	Taylor	Polynomial	$P_2(x)$	about	$x_0 = 0,$	then
	$\int_0^{0.5} f(x) dx \approx$	2	ŭ	-				

2. Let
$$f(x) = \frac{x^3}{5x+e}$$
 by using two-digits chopping arithmetic $f(\pi) \approx$

_(correct)

- 3. Suppose p^* must approximate $\sqrt{2}$ with relative error at most 10^{-3} , then the largest interval in which p^* must lies is
 - (a) [1.4128, 1.4156]
 - (b) [1.4328, 1.5156]
 - (c) (1.3731, 1.4371)
 - (d) (1.2541, 1.4156)
 - (e) (1.5128, 1.6128)

no students = 48 Average = 85.4167 %

4. Let $x = \tan x$. Using the Bisection method on the interval [1.5, 2] then $p_3 =$

(a) 1.5625		(correct)
(b) 1.7325		
(c) 1.6256		
(d) 1		
(e) 1.8252	no students = 48 Average = 87.5000 %	

5. Use a fixed-point method to determine a solutions accurate to with in 10^{-2} for $x^3 - x - 1 = 0$ on [1, 2]. Use $p_0 = 1$ and $g(x) = \sqrt{1 + \frac{1}{x}}$, then the solution is (a) 1.3239 _____ (correct)

- (b) 1.3066 (c) 1.3271 no students = 48(d) 1.4230 Average = 70.8333 %
- (e) 1.3139

6. Let $g(x) = 2^{-x}$ on the interval $\left\lfloor \frac{1}{3}, 1 \right\rfloor$ and $p_0 = 1$, the minimum number of iteration required to achieve 10^{-4} by fixed-point method is:

(e) 17

Average = 72.9167 %

7. If the Secant method used to approximate the solution for the equation $\sin x = e^{-x}$ with $p_0 = 0$ and $p_1 = 0.5$, then $p_3 =$

8. By using Newton's method with $p_0 = 2$ and polynomial with lowest degree to approximate $\sqrt{1+\sqrt{3}}$, then $p_2 =$

(a) 1.6631	(correct)
(b) 1.8831	
(c) 1.2631	
(d) 1.6881	no students = 48

(e) 1.7331 Average = 91.6667 %

9. Let $f(x) = \sqrt[3]{x-1}$, and $p_2(x)$ be the interpolation polynomial of degree two and $x_0 = 1, x_1 = 1.5, x_2 = 2$, then $p_2(1.8) =$

10. Let S(x) be a natural cubic spline that passes through the points (1, 1), (2, 3) and (4, 5) then S(3) =

(a) 4.2500		(correct)
(b) 4.4500		
(c) 4.8500		
(d) 4.7500	no students = 48 Average = 77.0833 %	
(e) 4.6500		

11. Given the following data: f(2.1) = 3.4321, f(2.3) = 4.3210, f(2.5) = 5.3210 and f(2.6) = 6.3215. Using the three point formula to approximate f'(2.5)

(a) 5.2778		(correct)
(b) 4.2778		
(c) 5.8778	no students = 48	
(d) 5.7878	Average = 85.4167 %	
(e) 4.8778		

12. Given the following data:

x	2.1	2.2	2.3	2.4	2.5
f(x)	3.1450	4.2351	m	6.3210	7.4321

If the composite Simpon's rule gives $\int_{2.1}^{2.5} f(x) dx = 8.3215$, then $m \approx$

(a) 98.4215		(correct)	
(b) 97.4215			
(c) 96.4135			
(d) 99.0210	no students = 48 Average = 75.0000 %		
(e) 1			

MASTER

- 13. The value of n and h required to approximate $\int_3^5 \sqrt{1+x} \, dx$ to within 10^{-3} Use Composite Trapezoidel rule
 - (a) n = 5, h = 0.4 ______(correct) (b) n = 4, h = 0.25(c) n = 6, h = 0.660(d) n = 5, h = 0.61 no students = 48 (e) n = 6, h = 0.4 Average = 72.9167 %

14. The equation $x^2 - \ln x = x$, which of the following initial guess, Newton's Method will not work?

(a) $p_0 = 1$		(correct)
(b) $p_0 = 1.5$		
(c) $p_0 = 2$		
(d) $p_0 = 2.5$		
(e) $p_0 = 1.7$	no students = 48 Average = 64.5833 %	

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	D 8	D 10	A ₈	D 14
2	A	В 11	A ₈	В 6	В ,
3	A	С 13	A ₉	С 10	С 1
4	А	A 14	Аз	А 9	D 13
5	A	A ₉	Е 14	D 3	D ₈
6	A	B 2	A 4	A 12	В 6
7	A	D 4	D 1	В 14	D 10
8	A	A 5	A 5	В 7	D 11
9	А	D 1	С 11	С 4	Сз
10	A	В 10	D 13	С 11	В 5
11	А	С 7	B 2	A 5	B 2
12	A	Е 6	B 6	Е	A 12
13	A	Ез	В 12	С 13	B 4
14	A	D 12	D ₇	C 2	C ₇

Averages for each Question

1.0000	77.0833
2.0000	87.5000
3.0000	85.4167
4.0000	87.5000
5.0000	70.8333
6.0000	72.9167
7.0000	66.6667
8.0000	91.6667
9.0000	75.0000
10.0000	77.0833
11.0000	85.4167
12.0000	75.0000
13.0000	72.9167
14.0000	64.5833

Answer Counts

V	A	В	С	D	Е
1	3	3	2	4	2
2	5	3	1	4	1
3	4	3	5	1	1
4	1	5	3	5	0