Math405: Learning From Data Exam 1

10th October 2022 at $6.30 \text{pm}-8 \text{pm}^{\text{a}}$

 $^a slimb@kfupm.edu.sa$

Show Your Manual Work on Each Question

1. Cholesky Factorization (5 points)

Consider the matrix A:

 $A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right).$

Perform the Cholesky factorization on A.

2. $A = X\Lambda X^{-1}$ (5 points)

Consider the following matrix

$$A = \left(\begin{array}{cc} 3 & 2\\ 1 & 2 \end{array}\right).$$

- **a.** Find the eigenvalues λ of A.
- **b.** Find orthonormal eigenvectors V of A.
- **c.** Write the matrices X, X^{-1} and Λ such that: $S = X\Lambda X^{-1}$.

Preprint submitted to BlackBoard

October 16, 2022

3. Positive Definite Matrices (5 points)

Consider the function $f(x, y) = x^2y - xy + y^2$.

- **a.** Find every point (x, y) such that $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$.
- **b.** Which of these point(s) is a minimum? Explain!

4. $S = Q\Lambda Q^t$ (5 points)

Consider the following matrix

$$S = \left(\begin{array}{rrr} 1 & 2 \\ 2 & 1 \end{array}\right).$$

- **a.** Find the eigenvalues λ of S.
- **b.** Find orthonormal eigenvectors V of S.
- **c.** Write the matrices Q and Λ such that: $S = Q\Lambda Q^t$.

5. SVD (5 points)

Consider the matrix A such that:

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Perform the Singular Value Decomposition such that $A = U_A \Sigma_A V_A^t$.