Math405: Learning From Data Major Exam 2

16th November 2022 at $6:00 \text{pm}^1$

^aDuration 120 minutes ^bPlagiarism is strictly prohibited

NAME: KFUPM ID:

1. Changes in A^{-1} (5 points)

For the matrix:

$$A = \left(\begin{array}{cc} 4 & 1\\ 1 & 3 \end{array}\right).$$

Find the inverse of $M = A - u^t v$, where $u = (1 \ 1)$ and $v = (1 \ 1)$.

N.B.: You have to use the formula seen in class.

Preprint submitted to Dr. Slim Belhaiza (c)

November 18, 2022

2. NMF

Consider the matrix

$$A = \left(\begin{array}{cc} 2 & 4\\ 3 & 1 \end{array}\right)$$

a. Starting with an initial $U_0^t = (1, 1)$, detail manually the **two** first full iterations that would solve:

$$minimize \|A - UV\|_F^2, \text{ with } U, V \ge 0.$$

b. Find A_1 , the closest rank one approximation of A.

3. Pseudoinverse A^+ (5 points)

a. Find the pseudoinverse matrix A^+ for the given matrix:

$$A = \left(\begin{array}{rrr} 1 & 1 & -2 \\ -1 & 1 & 2 \end{array} \right).$$

b. For $b^t = (1 \ 1)$, show that $x^+ = A^+ b$ is the least squares solution to Ax = b.

4. Generalized SVD (5 points)

Consider the two matrices A and B such that:

$$A^{t} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{and} \quad B^{t} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Find analytically the GSVD factorization matrices U_a , U_b Z, Σ_a and Σ_b of A and B, such that $A = U_a \Sigma_a Z$ and $B = U_b \Sigma_b Z$. Detail all your steps.

5. Arnoldi Iteration (5 points)

Consider the matrix A such that:

$$A = \left(\begin{array}{cc} 3 & 1\\ 1 & 2 \end{array}\right).$$

a. Perform manually the Arnoldi iteration with $b^t = (1,1)$ and n = 1 to obtain the matrix Q and the vector h.

b. Write down the matrix H such that $H = Q^t A Q$.

c. What are from H the approximated values of the largest and the least eigenvalues of A?

6. Gram-Schmidt (5 points)

Consider the matrix A such that:

$$A = \left(\begin{array}{cc} 3 & 4\\ 1 & 2 \end{array}\right).$$

- **a.** Perform manually the Gram-Schmidt factorization A = QR.
- **b.** Verify that your solution satisfies the mathematical conditions:

$$A^{t}A = R^{t}R$$
 and $A^{-1} = R^{-1}Q^{t}$.