Title: Math 405 Learning from Data

Credit: 3-0-3

Textbook: Linear Algebra and Learning from Data, by Prof. Gilbert Strang, WELLESLEY- CAMBRIDGE PRESS, 2018.

Reference Textbook: Neural Network Design, M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesus, 2nd Edition, Amazon, 2014.

Addition Readings: Mathematics of Neural Networks, Chap.1, S. J. Belhaiza, 2022.

Description: Basic vector and matrix operations, Factorizations, Least-Square Estimation, Matrix Completion, Special Matrices, Fourier Transforms, Linear Regression and Neural Networks.

Learning Outcome: Upon successful completion of this course, a student should be able to:

- 1. Describe linear algebra and statistics fundamental to many data science algorithms.
- 2. Apply linear algebra concepts to probability and statistics.
- 3. Apply linear algebra to optimization problems.
- 4. Use linear algebra and statistics in selected machine learning algorithms.

Main objectives :

- 1. Introduce topics from linear algebra, statistics, and optimization related to data science.
- 2. Discuss selected applications in Regression and Neural Networks using numerical software, toolboxes, and libraries.

Grading Policy:

	Material: (1.1-1.9)	20%
1. Exam I	Place:	(60 points)
2. Exam II	Material: (1.10-1.4*) Date: Place: TBA	20% (60 points)
3. Final Exam	Material: (Comprehensive) Date: Place: TBA	35% (105 points)
4. Class Work	i) Homeworks: Theoretical and practical assignments.	20% (60 points)
	ii) Class Activities: Class participation and attendance.	5% (15 points)

Exam Questions: The questions of the common exams are based on the examples, homework theoretical and practical problems.

Attendance: Attendance is a University Requirement. A DN grade will be awarded to any student who accumulates 9 unexcused absences.

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

Week	Dates (2022)	Sec.	Topics		
1	Aug. 28 - Sep 1	1.1	Multiplication Ax Using Columns of A		
		1.2	Matrix-Matrix Multiplication AB.		
	a i a	1.3	The Four Fundamental Subspaces		
2 Sep. 4	Sep. 4 - 8	1.4	Elimination and $A = LU$		
	0 11 15	1.5	Orthogonal Matrices and Subspaces		
3	Sep. 11 - 15	1.6	Eigenvalues and Eigenvectors		
	G 10 00	1.7	Symmetric Positive Definite Matrices		
4 Sep. 18 - 22		1.8	Singular Values and Singular Vectors in the SVD		
Thursday 22 nd September: National Day Holiday					
5 Sep. 2	a az a ao	1.9	Principal Components and the Best Low Rank Matrix		
	Sep. 25 – Sep. 29	1.10	Rayleigh Quotients and Generalized Eigenvalues		
First Major Exam: TBA [1.1 to 1.9]					
6 C		1.12	Factoring Matrices and Tensors: Positive and Sparse		
	Oct. 2 - 6	2.1	Numerical Linear Algebra		
_	0 . 0 12	2.2	Least Squares		
	Oct. 9 - 13	2.2	Least Squares (Continue)		
0	0 + 16 - 20	2.3	Three Bases for the Column Space		
8	Oct. 16 - 20	3.1	Changes in A^{-1} from Changes in A .		
0	0 / 02 07	1.1*	The Error Function		
9 (Oct. 23 - 27	1.2*	Steepest Descent Algorithm		
10		1.3*	Newton-Raphson Algorithm		
10	10 Oct. 30- Nov. 3	1.4*	Conjugate Gradient Algorithm		
Second Major Exam: TBA [1.10 to 1.4*]					
11 Nov	N 6 10	1.5*	Activation Functions		
	Nov. 6 – 10	1.6*	Backpropagation		
12 Nov. 13	N 10 17	1.7*	Learning and Training		
	Nov. $13 - 17$	1.8*	Pattern Recognition		
13 Nov		2.1*	Introduction to Time Series		
	Nov. 20 – 24	2.2*	Linear Regression		
Midterm Break: Nov. 27 – Dec. 1					
14.15	Dec. 4 – 8		Review and Pace Adjustment		
14-15	Dec. 11 -15		Review and Pace Adjustment		
Final Exam: TBA					

*: additional reading reference.