Name: ID#: Serial #:

- 1. [10pts] Let a, b be integers. Prove that
- (a) If a is odd, then (5a + 4, 10a + 4) = 1.

Proof. (5a+4, 10a+4) = (5a+4, 10a+4-2(5a+4)) = (5a+4, -4) = 1 (since a odd implies 5a+4 odd).

(b) If (a, 4) = (b, 4) = 2, then (a + b, 4) = 4.

Proof. Put a = 2u, b = 2v, then (2u, 4) = 2 implies u = 2h + 1 for some $h \in \mathbb{Z}$, and similarly v = 2k + 1 for some $k \in \mathbb{Z}$. Hence (a + b, 4) = (4h + 4k + 4, 4) = 4.

2. [10pts] (a) Find a positive integer n such that n/3 is a perfect square and n/2 is a perfect cube.

Solution. n is a multiple of 6, so put $n = 2^x 3^y$. We want x and y - 1 to be even, x - 1 and y to be multiples of 3. We can take x = 4, y = 3, i.e. $n = 2^4 3^3$.

Second way. Use the Fundamental Theorem of Arithmetic (this gives the form of all such n).

Third way. We have $n/3 = a^2$ and $n/2 = b^3$ for some $a, b \in \mathbb{N}$. Hence $n = 3a^2 = 2b^3$ so that 3|b| and 2|a| and there exist $c, d \in \mathbb{N}$ such that b = 3c and a = 2d. This gives

$$n = 12d^2 = 2 \times 3^3c^3$$

i.e. $2d^2 = 9c^3$ giving d = 3e, c = 2f for some $e, f \in \mathbb{N}$. This in turn gives

$$e^2 = 4f^3.$$

So we can take e = 2, f = 1 and then $n = 3 \times 12^2$. (This argument, combined with the result in Part (b) also gives the form of all such n.)

(b) Let a, b positive integers such that $a^2 = b^3$. Prove there exists $c \in \mathbb{N}$ such that $a = c^3$ and $b = c^2$.

Proof. We can use the Fundamental Theorem of Arithmetic. A simpler proof is to say that $b^2|b^3$ so $b^2|a^2$, which gives a=bc for some $c \in \mathbb{N}$. This means $b^2c^2=b^3$, so $b=c^2$ and then $a=c^3$.

3. [10pts] (a) Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}$. Show that $a+1, a+2, \ldots, a+m$ is a complete residue system mod m.

Proof. The set $\{a+j: 1 \le j \le m\}$ contains exactly m elements and no two distinct elements of it are congruent mod m since $a+i \equiv a+j \pmod m$, where $1 \le i \le j \le m$, implies i=j.

(b) Let r_1, r_2, \ldots, r_k be a reduced residue system (RRS) mod m, where $m \in \mathbb{N}$. Suppose (a, m) > 1. Is $a + r_1, a + r_2, \ldots, a + r_k$ necessarily a RRS mod m? Justify your answer.

Solution. No: Take m = 6, a = 3. Then 1, 5 is a reduced residue system mod 6 but 4, 8 is not.

4. [10pts] (a) Prove that if p is an odd prime then $2(p-3)! \equiv -1 \pmod{p}$.

Proof. By Wilson's theorem, $(p-1)(p-2)(p-3)! \equiv -1 \pmod{p}$, so $2(p-3)! \equiv -1 \pmod{p}$.

(b) Prove that if a, b are coprime positive integers, then $a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab}$.

Proof. By Euler-Fermat's theorem, $a^{\varphi(b)} \equiv 1 \pmod{b}$, so $a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{b}$, similarly $a^{\varphi(b)} + b^{\varphi(a)} - 1 \equiv 0 \pmod{a}$. Since (a, b) = 1, we get $a^{\varphi(b)} + b^{\varphi(a)} \equiv 1 \pmod{ab}$.

5. [10pts] (a) Solve the congruence $x^2 + x + 1 \equiv 0 \pmod{49}$.

Solution. We can use trial and error to solve $x^2 + x + 1 \equiv 0 \pmod{7}$, however we can rewrite the congruence as $x^2 + x - 6 \equiv 0 \pmod{7}$, so that $(x - 2)(x + 3) \equiv 0 \pmod{7}$. This gives the solutions 2 and 4.

• Let x = 2 + 7h, where $h \in \mathbb{Z}$. Then

$$(2+7h)^2 + (2+7h) + 1 \equiv 0 \pmod{49}$$

gives $7(1+5h) \equiv 0 \pmod{49}$, i.e. $1+5h \equiv 0 \pmod{7}$. So $h \equiv 4 \pmod{7}$ and there is $k \in \mathbb{Z}$ such that h=4+7k. Hence $x=2+7(4+7k) \equiv 30 \pmod{49}$.

• Let x = 4 + 7h, where $h \in \mathbb{Z}$. Then

$$(4+7h)^2 + (4+7h) + 1 \equiv 0 \pmod{49}$$

gives $7(3+9h) \equiv 0 \pmod{49}$, i.e. $1+3h \equiv 0 \pmod{7}$. So $h \equiv 2 \pmod{7}$ and there is $k \in \mathbb{Z}$ such that h=2+7k. Hence $x=4+7(2+7k) \equiv 18 \pmod{49}$.

(b) Solve the system of congruences: $x \equiv 1 \pmod{3}$, $x \equiv 1 \pmod{5}$, $x \equiv 6 \pmod{10}$, $x \equiv 6 \pmod{11}$.

Solution. The system is equivalent to

$$x \equiv 1 \pmod{3}$$
, $x \equiv 6 \pmod{10}$, $x \equiv 6 \pmod{11}$.

where 3, 10, 11 are pairwise coprime, so that it has a unique solution mod 330.

Let x = 6 + 11h (where $h \in \mathbb{Z}$), then $6 + 11h \equiv 6 \pmod{10}$ and so h = 10k (where $k \in \mathbb{Z}$). We then get $x = 6 + 110k \equiv 1 \pmod{3}$, i.e. $k \equiv 2 \pmod{3}$. Let k = 2 + 3l (where $l \in \mathbb{Z}$), so that x = 6 + 110(2 + 3l). The solution of the system is therefore $226 \pmod{330}$.