
KFUPM/ Department of Mathematics/T212/MATH 427/Exam 1

Name: ID#: Serial #:

1. [10pts] Let a, b be integers. Prove that

(a) If a is odd, then (5a+ 4, 10a+ 4) = 1.

Proof. (5a+ 4, 10a+ 4) = (5a+ 4, 10a+ 4− 2 (5a+ 4)) = (5a+ 4,−4) = 1 (since a odd implies
5a+ 4 odd).

(b) If (a, 4) = (b, 4) = 2, then (a+ b, 4) = 4.

Proof. Put a = 2u, b = 2v, then (2u, 4) = 2 implies u = 2h + 1 for some h ∈ Z, and similarly
v = 2k + 1 for some k ∈ Z. Hence (a+ b, 4) = (4h+ 4k + 4, 4) = 4.

2. [10pts] (a) Find a positive integer n such that n/3 is a perfect square and n/2 is a perfect cube.

Solution. n is a multiple of 6, so put n = 2x3y. We want x and y− 1 to be even, x− 1 and y to be
multiples of 3. We can take x = 4, y = 3, i.e. n = 2433.

Second way. Use the Fundamental Theorem of Arithmetic (this gives the form of all such n).

Third way. We have n/3 = a2 and n/2 = b3 for some a, b ∈ N. Hence n = 3a2 = 2b3 so that 3|b
and 2|a and there exist c, d ∈ N such that b = 3c and a = 2d. This gives

n = 12d2 = 2× 33c3

i.e. 2d2 = 9c3 giving d = 3e, c = 2f for some e, f ∈ N. This in turn gives

e2 = 4f 3.

So we can take e = 2, f = 1 and then n = 3 × 122. (This argument, combined with the result in
Part (b) also gives the form of all such n.)

(b) Let a, b positive integers such that a2 = b3. Prove there exists c ∈ N such that a = c3 and b = c2.

Proof. We can use the Fundamental Theorem of Arithmetic. A simpler proof is to say that b2|b3 so
b2|a2, which gives a = bc for some c ∈ N. This means b2c2 = b3, so b = c2 and then a = c3.

3. [10pts] (a) Let m ∈ N and a ∈ Z. Show that a+1, a+2, . . . , a+m is a complete residue system
modm.

Proof. The set {a+ j : 1 ≤ j ≤ m} contains exactly m elements and no two distinct elements of it
are congruent modm since a+ i ≡ a+ j(modm), where 1 ≤ i ≤ j ≤ m, implies i = j.

(b) Let r1, r2, . . . , rk be a reduced residue system (RRS) modm, where m ∈ N. Suppose (a,m) > 1.
Is a+ r1, a+ r2, . . . , a+ rk necessarily a RRS modm? Justify your answer.

Solution. No: Take m = 6, a = 3. Then 1, 5 is a reduced residue system mod 6 but 4, 8 is not.
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4. [10pts] (a) Prove that if p is an odd prime then 2 (p− 3)! ≡ −1 (mod p) .

Proof. By Wilson’s theorem, (p− 1) (p− 2) (p− 3)! ≡ −1 (mod p) , so 2 (p− 3)! ≡ −1 (mod p) .

(b) Prove that if a, b are coprime positive integers, then aϕ(b) + bϕ(a) ≡ 1 (mod ab) .

Proof. By Euler-Fermat’s theorem, aϕ(b) ≡ 1 (mod b) , so aϕ(b) + bϕ(a) − 1 ≡ 0 (mod b) , similarly
aϕ(b) + bϕ(a) − 1 ≡ 0 (mod a) . Since (a, b) = 1, we get aϕ(b) + bϕ(a) ≡ 1 (mod ab) .

5. [10pts] (a) Solve the congruence x2 + x+ 1 ≡ 0 (mod 49) .

Solution. We can use trial and error to solve x2 + x + 1 ≡ 0 (mod 7) , however we can rewrite the
congruence as x2 + x− 6 ≡ 0 (mod 7) , so that (x− 2) (x+ 3) ≡ 0 (mod 7) . This gives the solutions
2 and 4.

• Let x = 2 + 7h, where h ∈ Z. Then

(2 + 7h)2 + (2 + 7h) + 1 ≡ 0 (mod 49)

gives 7 (1 + 5h) ≡ 0 (mod 49) , i.e. 1 + 5h ≡ 0 (mod 7) . So h ≡ 4 (mod 7) and there is k ∈ Z
such that h = 4 + 7k. Hence x = 2 + 7 (4 + 7k) ≡ 30 (mod 49) .

• Let x = 4 + 7h, where h ∈ Z. Then

(4 + 7h)2 + (4 + 7h) + 1 ≡ 0 (mod 49)

gives 7 (3 + 9h) ≡ 0 (mod 49) , i.e. 1 + 3h ≡ 0 (mod 7) . So h ≡ 2 (mod 7) and there is k ∈ Z
such that h = 2 + 7k. Hence x = 4 + 7 (2 + 7k) ≡ 18 (mod 49) .

(b) Solve the system of congruences: x ≡ 1 (mod 3) , x ≡ 1 (mod 5) , x ≡ 6 (mod 10) , x ≡ 6 (mod 11) .

Solution. The system is equivalent to

x ≡ 1 (mod 3) , x ≡ 6 (mod 10) , x ≡ 6 (mod 11) .

where 3, 10, 11 are pairwise coprime, so that it has a unique solution mod 330.
Let x = 6 + 11h (where h ∈ Z), then 6 + 11h ≡ 6 (mod 10) and so h = 10k (where k ∈ Z). We
then get x = 6 + 110k ≡ 1 (mod 3) , i.e. k ≡ 2 (mod 3) . Let k = 2 + 3l (where l ∈ Z), so that
x = 6 + 110 (2 + 3l) . The solution of the system is therefore 226 (mod 330) .
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