Name: Serial $\#$: Serial $\#$:

1. [10pts] (a) Reduce the congruence $x^{10} + x^7 + 3x^4 \equiv 2 \pmod{5}$ to an equivalent congruence of degree at most 4.

Solution

$$
x^{10} + x^7 + 3x^4 = (x^5 - x)(x^5 + x) + (x^5 - x)x^2 + 3x^4 + x^3 + x^2
$$

Hence $x^{10} + x^7 + 3x^4 \equiv 2 \pmod{5}$ is equivalent to $3x^4 + x^3 + x^2 \equiv 2 \pmod{5}$.

(b) Show that $x^{12} + 10x^2 \equiv 0 \pmod{11}$ has 11 solutions.

Proof. $x^{12} + 10x^2 \equiv 0 \pmod{11}$ is equivalent to $(x^{11} - x)x \equiv 0 \pmod{11}$. By Fermat's theorem, $x^{11} - x \equiv 0 \pmod{11}$ has 11 solutions, so the given congruence also has 11 solutions (which is therefore an identical congruence).

2. [15pts] (a) Find a primitive root mod 29.

Solution. $\varphi(29) = 28$, with prime divisors 2 and 7. We have

$$
24 \equiv 16 \not\equiv 1 \pmod{29}
$$

$$
214 \equiv (25)2 24 \equiv 32 (-13) \equiv 3 \times (-39) \equiv -30 \not\equiv 1 \pmod{29}
$$

so 2 is a primitive root mod 29:

[3 is also a primitive root mod 29 and is slightly simpler to test because $3^3 \equiv -2 \pmod{29}$.]

(b) Determine the number of solutions of the congruence $x^{12} \equiv 7 \pmod{29}$.

Solution. Since 29 is prime, we first check if $7^{\frac{28}{(12,28)}} \equiv 1 \pmod{29}$. We have

$$
7^{\frac{28}{(12,28)}} = 7^7 = (7^2)^3 \times 7 \equiv (-9^2) \times 63 \equiv 6 \times 5 \equiv 1 \pmod{29}
$$

Hence the given congruence has $(12, 28)$, i.e. 4, solutions.

(c) Let p be prime and such that $p \equiv 3 \pmod{4}$ and let q be a primitive root mod p. Prove that $-q$ is not a primitive root mod p .

Proof. Since g is a primitive root mod p and $\left(g^{\frac{p-1}{2}}\right)^2 \equiv 1 \pmod{p}$, we obtain $g^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Also, since $p \equiv 3 \pmod{4}$, we obtain $(-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Hence

$$
(-g)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} g^{\frac{p-1}{2}} \equiv 1 \pmod{p}
$$

so that $-g$ is not a primitive root mod p.

3. [15pts] (a) State the quadratic reciprocity law and determine whether the congruence

$$
x^2 \equiv 21 \pmod{89}
$$

is solvable.

Solution. *QRL*: If p and q are distinct odd primes, then $\left(\frac{p}{q}\right)$ \overline{q} \setminus (q p Δ $= (-1)^{\frac{(p-1)(q-1)}{4}}$

We have $\left(\frac{21}{89}\right)$ = $\left(\frac{10^2}{89}\right)$ $= 1.$ Hence the given congruence is solvable.

(b) Determine if the congruence $x^2 + 6x - 2 \equiv 0 \pmod{67}$ is solvable.

Solution. We have $x^2 + 6x - 2 = (x+3)^2 - 11$. Also, 11 and 67 are primes both congruent to 3 mod 4, hence $\left(\frac{11}{67}\right) = \left(\frac{67}{11}\right) = -1$. So the given congruence is not solvable.

(c) Prove that if p is an odd prime, then $\left(\frac{(p+1)}{2}\right)$ p $\left(-1 \right)^{(p^2-1)/8}$

Solution. We have $1 = \left(\frac{p+1}{p}\right)$ p \setminus = $\left((p + 1)/2 \right)$ p \setminus \bigwedge p $\binom{(p+1)/2}{n}$ p Δ = $\sqrt{2}$ p $\left(-1 \right)^{(p^2-1)/8}.$

4. [10pts] (a) Find the highest power of ²⁰ dividing 300!

Solution. The highest power of 20 dividing 300! is that of 5, which is

$$
\left[\frac{300}{5}\right] + \left[\frac{300}{5^2}\right] + \left[\frac{300}{5^3}\right] = 60 + 12 + 2 = 74
$$

Hence the highest power of 20 dividing 300! is 20^{74} .

(b) Prove that for any positive real numbers x, y we have $[x][y] \leq [xy] \leq [x][y] + [x] + [y]$. Is it possible to find a real number z such that $[z]^2 = [z^2] + 2$? Justify.

Proof. Since $[x] \leq x < [x]+1$, $[y] \leq y < [y]+1$, and $x, y > 0$, we get $[x] [y] \leq xy$, hence $[x] [y] \leq [xy]$. Also, $[xy] \leq xy < ([x] + 1) ([y] + 1) = [x] [y] + [x] + [y] + 1$, so that $[xy] \leq [x] [y] + [x] + [y]$.

Another way: Let $x = [x] + \varepsilon$, $y = [y] + \delta$ (so that $0 \le \varepsilon, \delta < 1$). We have

$$
[xy] = [([x] + \varepsilon) ([y] + \delta)] = [[x] [y] + \delta [x] + \varepsilon [y] + \varepsilon \delta] = [x] [y] + [\delta [x] + \varepsilon [y] + \varepsilon \delta]
$$

Hence $\left[xy\right] > \left[x\right] \left[y\right] (\because \delta \left[x\right] + \varepsilon \left[y\right] + \varepsilon \delta > 0)$, and

$$
[xy] \leq [x] [y] + [[x] + [y] + \varepsilon \delta] \quad (\because \delta [x] \leq [x], \varepsilon [y] \leq [y])
$$

$$
= [x] [y] + [x] + [y] + [\varepsilon \delta] = [x] [y] + [x] + [y] \quad (\because 0 \leq \varepsilon \delta < 1)
$$

For the last question, take $z = -1.5$. Then $[z]^2 = 4 = [z^2] + 2$. (Of course, by the previous part, such

z cannot be positive.)