Name:

ID#:

1. [10pts] (a) Let $a, b \in \mathbb{Z}$ and p be prime such that $(a, p^3) = p^2$, $(b, p^4) = p^3$. Find (ab, p^7) and $(a+b, p^7)$.

Solution. We have $p^2 \parallel a$ and $p^3 \parallel b$, hence $p^5 \parallel ab$ and $p^2 \parallel (a+b)$. This implies $(ab, p^7) = p^5$ and $(a+b, p^7) = p^2$.

(b) Let $m, n \in \mathbb{N}$, m > 1. Prove that if g is a primitive root mod m and gcd $(n, \varphi(m)) = 1$, then g^n is a primitive root mod m.

Solution. We have $\operatorname{ord}_{m}(g^{n}) = \frac{\varphi(m)}{(\varphi(m), n)} = \varphi(m)$, so g^{n} is a primitive root $\operatorname{mod} m$.

2. [10pts] Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be defined by $f(n) = 2^r$ where $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ is a factorization of n into a product of distinct prime powers.

(a) Prove that f is multiplicative and that $\sum_{d|n} f(d) = \prod_{i=1}^{r} (1+2a_i)$

Solution. For each $n \in \mathbb{N}$, $f(n) = 2^{\omega(n)}$ where $\omega(n)$ is the number of distinct prime divisors of n. Hence f(1) = 1 and if $m, n \in \mathbb{N}$ and (m, n) = 1, then $\omega(mn) = \omega(m) + \omega(n)$ (since m and n have no prime divisor in common).

$$f(mn) = 2^{\omega(mn)} = 2^{\omega(m)+\omega(n)} = f(m) f(n)$$

So f is multiplicative and therefore so too is $\sum_{d|n} f(d)$. Let $F(n) = \sum_{d|n} f(d)$, where $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ is a factorization of n into a product of distinct prime powers. Note first that F(1) = 1 and for any prime power p^a ,

$$F(p^{a}) = \sum_{d|p^{a}} f(d) = 1 + 2a.$$

Hence $F(n) = \prod_{i=1}^{r} F(p_i^{a_i}) = \prod_{i=1}^{r} (1+2a_i).$

(b) Prove that $\sum_{d|n} \mu^2(d) = f(n)$, where μ is the Möbius function.

Solution. For each $n \in \mathbb{N}$, let $h(n) = \sum_{d|n} \mu^2(d)$. Clearly h is multiplicative (recall that μ is multiplicative), and for any prime power p^a ,

$$h(p^{a}) = \sum_{d|p^{a}} \mu^{2}(d) = 2 = f(p^{a}).$$

Hence $\sum_{d|n} \mu^2(d) = f(n)$.

3. [15pts] Solve over \mathbb{Z} each of the equations below.

(a)
$$x + 7y + 9z = 14$$

Solution. If (x, y, z) is a solution over \mathbb{Z} of the equation, then $x + 2y \equiv 0 \pmod{7}$ and so x = 7u - 2z for some $u \in \mathbb{Z}$. Hence u + z = 2 - y. We therefore obtain x = 7u - 2v, y = 2 - u - v, z = v, where

 $u, v \in \mathbb{Z}$ (note of course that if x = 7u - 2v, y = 2 - u - v, z = v, then x + 7y + 9z = 14). [Note that there are infinitely many other equivalent parametric forms of the solution of this Diophantine equation.]

(b) $x^2 + y^2 = (x + y - 2)^2$

Solution. We can use the general parametric form of Pythagorean triples: $|x| = d(m^2 - n^2)$, |y| = 2dmn, $|x + y - 2| = d(m^2 + n^2)$ (where $m, n \in \mathbb{N}$, m > n and d a nonnegative integer assuming, w.l.o.g., that y is even). However, expanding the RHS gives 2xy - 4x - 4y + 4 = 0, i.e (x - 2)(y - 2) = 2. This means $x - 2 \in \{1, -1, 2, -2\}$ giving the 4 solutions (3, 4), (1, 0), (4, 3), (0, 1).

(c) $x^2 + y^2 = 9z + 3$

Solution. If $x^2 + y^2 = 9z + 3$ is solvable over \mathbb{Z} , then $3|x^2 + y^2$ and so x = 3a, y = 3b for some $a, b \in \mathbb{Z}$. We then get 9|(9z + 3) which is impossible. So the equation has no solution over \mathbb{Z} .

4. [10pts] (a) Let $m, n \in \mathbb{N}$.

(i) Find a polynomial equation with integer coefficients for which $\sqrt{m} - \sqrt{n}$ is a root and deduce that if $\sqrt{m} - \sqrt{n}$ is rational, then it must be an integer.

Solution. Let $a = \sqrt{m} - \sqrt{n}$. Then $a^2 = m + n - 2\sqrt{mn}$. Hence $2\sqrt{mn} = m + n - a^2$, i.e. $(m + n - a^2)^2 = 4mn$. So *a* is a root of the monic polynomial equation over \mathbb{Z} , $(m + n - x^2)^2 - 4mn = 0$. Therefore if $\sqrt{m} - \sqrt{n} \in \mathbb{Q}$, then $\sqrt{m} - \sqrt{n} \in \mathbb{Z}$.

(ii) Find all m in \mathbb{N} for which $\sqrt{m} - \sqrt{2}$ is rational.

Solution. Let $b = \sqrt{m} - \sqrt{2}$ and assume $b \in \mathbb{Q}$. Then $(b + \sqrt{2})^2 = m$, i.e. $2b\sqrt{2} = m - b^2 - 2 \in \mathbb{Q}$. Since $\sqrt{2} \notin \mathbb{Q}$, we deduce that b = 0. So the only m in \mathbb{N} for which $\sqrt{m} - \sqrt{2} \in \mathbb{Q}$ is m = 2.

Another way. Let $\sqrt{m} - \sqrt{2} \in \mathbb{Q}$, then $\frac{m-2}{\sqrt{m} + \sqrt{2}} \in \mathbb{Q}$. Assume for contradiction that $m-2 \neq 0$, then $\sqrt{m} + \sqrt{2} \in \mathbb{Q}$ and so $2\sqrt{2} = \sqrt{m} + \sqrt{2} - (\sqrt{m} - \sqrt{2}) \in \mathbb{Q}$, which is impossible. So m = 2.

(b) Is π^3 algebraic? Justify.

Solution. If π^3 were algebraic, then there would be a nonzero polynomial P(x) over \mathbb{Z} such that $P(\pi^3) = 0$ and hence π would be a root of the polynomial equation $P(x^3) = 0$, which is impossible since π is not algebraic. Hence π^3 is not algebraic.

5. [15pts] (a) Let $b \equiv a^{11} \pmod{95}$ where (a, 95) = 1. Find a positive integer k such that

$$b^k \equiv a \,(\mathrm{mod}\,95)$$

Solution. We need to find $k \in \mathbb{N}$ such that $11k \equiv 1 \pmod{\varphi(95)}$, i.e. $11k \equiv 1 \pmod{72}$. This means k is a positive solution of the system $11x \equiv 1 \pmod{9}$, $11x \equiv 1 \pmod{9}$, i.e. $x \equiv 3 \pmod{8}$, $x \equiv 5 \pmod{9}$. We get x = 5 + 9t ($t \in \mathbb{Z}$) and $t \equiv 6 \pmod{8}$, so that x = 5 + 9 (6 + 8r), where $r \in \mathbb{Z}$. We can therefore take k = 59.

(b) Determine whether 91 is a pseudoprime to the base 3.

Solution. We check whether $3^{90} \equiv 1 \pmod{91}$. We have $\varphi(91) = 72$, so $3^{90} \equiv 3^{18} \pmod{91}$. Now $3^{18} \equiv (3^3)^6 \equiv 1 \pmod{7}$ and $3^{18} \equiv (3^3)^6 \equiv 1 \pmod{13}$. So $3^{18} \equiv 1 \pmod{91}$ and 91 is a pseudoprime to the base 3.

(c) Find a Carmichael number of the form 85p where p is prime.

Solution. Let N = 85p. For N to be a Carmichael number, 4, 16 and p-1 must divide N-1, i.e. $16|((16 \times 5p) + 5p - 1) \text{ and } (p-1)|(85(p-1) + 84)$. Hence 16|(p+3) and (p-1)|84. This means $p-1 \ge 12$ and p-1 is an even divisor of 84, we can therefore take p = 13. [Note that another value of p is 29. We therefore get 2 Carmichael numbers of the form 85p: 1105 and 2465.]

6. [10pts] (a) Let a/b, a'/b', a''/b'' be consecutive fractions in the same row of the Farey table. Show that $\frac{a'}{b'} = \frac{a+a''}{b+b''}$

Solution. We have a'b - ab' = a''b' - a'b'' = 1. So a'(b + b'') = b'(a + a'').

(b) Without setting up the Farey table, find the fractions immediately to the right and to the left of 4/5 in the 20th row of the table.

Solution. Let a/b, c/d be the fractions immediately to the right and to the left (resp.) of 4/5 in the 20th row. Then $4b \equiv -1 \pmod{5}$ and $b \in \{16, 17, 18, 19, 20\}$. Clearly b = 16 and then $a = \frac{1+4b}{5} = 13$, so a/b = 13/16.

Also, $4d \equiv 1 \pmod{5}$ and $d \in \{16, 17, 18, 19, 20\}$ gives d = 19 and c = 15, so c/d = 15/19.