KFUPM

Department of Mathematics

Math 427, Exam I, Term 242.

Part I (50 points)

- **1. [10 points]** Find all integers n such that 5n + 3|7n + 3.
- **2. [10 points]** Use Fermat's Factorization method to find, if possible, two nontrivial factors of the number 846319.
- **3. [10 points]** Solve 2025x 1446y = 6 in integers.
- **4. [10 points]** Find the remainder when Fermat Number $F_{100} = 2^{2^{100}} + 1$ is divided by 7.
- **5. [10 points]** Determine whether or not $70 = 2 \cdot 5 \cdot 7$ is a pseudoprime to the base 11.

Part II (50 points)

- **6. [10 points]** Prove that $n + 1 | \binom{2n}{n}$ for any integer $n \ge 1$.
- **7. [10 points]** Let *a* and *b* be positive integers. Let [a, b] = m and write $m = a\alpha$ and $m = b\beta$ for some positive integers α and β . Prove that $(\alpha, \beta) = 1$.
- **8. [10 points]** Prove that the following fraction is in lowest form for any integer *n*:

$$\frac{n^2 + n - 1}{2n^3 + n^2 - n + 1}$$

- **9. [10 points]** Let $p \ge 3$ be a prime number. Prove that $p|(p-3)! + 2^{p-2}$. Hint: Use Wilson's Theorem and Fermat's Theorem.
- **10.[10 points]** Let $r_1, r_2, \cdots, r_{p-1}$ be a reduced residue system modulo a prime $p \ge 3$. Prove that

$$p|r_1 + r_2 + \dots + r_{p-1}.$$

Good luck,

Ibrahim Al-Rasasi

Solutions

Q1: Find all integers *n* such that 5n + 3|7n + 3.

Solution: Note that $7 \cdot (5n + 3) - 5 \cdot (7n + 3) = 6$. Then 5n + 3|7n + 3 if and only if 5n + 3|6. This implies that $5n + 3 = \pm 1$ or ± 2 or ± 3 or ± 6 . Solving, we conclude that the only possible integers are n = -1 and n = 0.

Q2: Use Fermat's Factorization method to find, if possible, two nontrivial factors of the number 846319.

Solution: As $\sqrt{846319} \approx 919.56$, we start by taking $x = 920, 921, 922, \cdots$.

Now

$$x^2 - 846319 = 920^2 - 846319 = 81 = 9^2$$
, a square.

Then $846319 = 920^2 - 9^2 = (920 - 9)(920 + 9) = 911 \times 929$.

Q3: Solve 2025x - 1446y = 6 in integers.

Solution: We use the Euclidean algorithm to find (2025, 1446):

$$2025 = 1446 (1) + 579$$

 $1446 = 579(2) + 288,$
 $579 = 288(2) + 3,$
 $288 = 3(96).$

Thus (2025, 1446) = 3 and 3|6 and hence the equation is solvable. Solving backward for the remainders we find that

$$3 = 2025(5) - 1446(7).$$

Multiplying by 2, we get

$$6 = 2025(10) - 1446(14).$$

Thus $(x_0, y_0) = (10, 14)$ is one solution of the equation. All other solutions are

$$x = 10 + \left(\frac{1446}{3}\right)t = 10 + 482t, y = 14 + \left(\frac{2025}{3}\right)t = 14 + 675t, t \in \mathbb{Z}.$$

Q4: Find the remainder when Fermat Number $F_{100} = 2^{2^{100}} + 1$ is divided by 7.

Solution: Note that $2^3 \equiv 1 \mod 7$. Next we divide 2^{100} by $3: 2^{100} = 3q + r$. Using congruences, $2 \equiv -1 \mod 3$ and so $2^{100} \equiv 1 \mod 3$. This implies that $2^{100} = 1 + 3q$ for some positive integer q. Now we have:

$$2^{3} \equiv 1 \mod 7 \Rightarrow 2^{3q} \equiv 1 \mod 7 \Rightarrow 2^{3q+1} \equiv 2 \mod 7$$
$$\Rightarrow 2^{2^{100}} \equiv 2 \mod 7 \Rightarrow F_{100} \equiv 3 \mod 7.$$

We conclude that the required remainder is 3.

Q5: Determine whether or not 70 is a pseudoprime to the base 11.

Solution: We need to check whether or not $11^{69} \equiv 1 \mod 70$. As $70 = 2 \cdot 5 \cdot 7$, we have first to compute $11^{69} \mod 2$, 5, and 7.

Since $11 \equiv 1 \mod 2$, then $11^{69} \equiv 1 \mod 2$.

By Fermat's Theorem, $11^4 \equiv 1 \mod 5$. As $69 = 4 \cdot 17 + 1 = 68 + 1$, then raising to the 17^{th} power, we get $11^{68} \equiv 1 \mod 5$, and multiplying by 11, we get $11^{69} \equiv 11 \mod 5$. But $11 \equiv 1 \mod 5$. Then $11^{69} \equiv 1 \mod 5$.

Again, by Fermat's Theorem, $11^6 \equiv 1 \mod 7$. As $69 = 6 \cdot 11 + 3 = 66 + 3$, then raising to the 11^{th} power, we get $11^{66} \equiv 1 \mod 7$, and multiplying by 11^3 , we get $11^{69} \equiv 11^3 \mod 7$. But $11^3 \equiv 4^3 = 8 \cdot 8 \equiv 1 \cdot 1 = 1 \mod 7$. Then $11^{69} \equiv 1 \mod 7$.

Now since $11^{69} \equiv 1 \mod 2$, $11^{69} \equiv 1 \mod 5$, and $11^{69} \equiv 1 \mod 7$, then

$$11^{69} \equiv 1 \mod [2, 5, 7],$$

and hence $11^{69} \equiv 1 \mod 70$. We conclude that 70 is a pseudoprime to the base 11.

Q6: Prove that $n + 1 \binom{2n}{n}$ for any integer $n \ge 1$.

Solution: Note that

$$\binom{2n}{n} = \frac{(2n)!}{n! \cdot n!} = \frac{(n+1) \cdot (n+2) \cdot \dots (2n-1) \cdot (2n)}{n!}$$
$$= \frac{(n+1) \cdot (n+2) \cdot \dots (2n-1) \cdot (2n)}{n \cdot (n-1)!}$$
$$= \frac{n+1}{n} \cdot \frac{(n+2) \cdot \dots (2n-1) \cdot (2n)}{(n-1)!} = \frac{n+1}{n} \cdot a,$$

where a is some integer (the product of n - 1 consecutive integers is divisible by (n - 1)!). This can be written as

$$n \cdot \binom{2n}{n} = (n+1) \cdot a.$$

As $n + 1 | n \cdot \binom{2n}{n}$ and (n + 1, n) = 1, then $n + 1 | \binom{2n}{n}$.

Q7: Let *a* and *b* be positive integers. Let [a, b] = m and write $m = a\alpha$ and $m = b\beta$ for some positive integers α and β . Prove that $(\alpha, \beta) = 1$.

Solution: Let (a, b) = d. As a, b = ab, then md = ab. This implies that

 $a\alpha d = ab \Rightarrow \alpha d = b,$ $b\beta d = ab \Rightarrow \beta d = a.$ Now $d = (a, b) = (\beta d, \alpha d) = d(\beta, \alpha)$ and hence $(\alpha, \beta) = 1.$

Q8: Prove that the following fraction is in lowest form for any integer *n*:

$$\frac{n^2 + n - 1}{2n^3 + n^2 - n + 1}.$$

Solution: We need to show that $(2n^3 + n^2 - n + 1, n^2 + n - 1) = 1$. By dividing we get

$$2n^{3} + n^{2} - n + 1 = (n^{2} + n - 1)(2n - 1) + 2n.$$

This implies that

$$(2n^3 + n^2 - n + 1), \quad n^2 + n - 1) = (n^2 + n - 1), \quad 2n).$$

Let $(n^2 + n - 1, 2n) = g$. As

$$2(n^{2} + n - 1) - (2n)(n + 1) = -2,$$

then g|2 and hence either g = 1 or g = 2. But $n^2 + n - 1 = n(n + 1) - 1$ is odd (as n(n + 1) is even). Then g = 1 and so the given fraction is in lowest form.

Q9: Let $p \ge 3$ be a prime number. Prove that $p|(p-3)! + 2^{p-2}$. **Hint:** Use Wilson's Theorem and Fermat's Theorem.

Solution: By Wilson's Theorem, $(p-1)! \equiv -1 \mod p$ implies that

$$(p-1)(p-2) \cdot (p-3)! \equiv -1 \bmod p$$

and hence $(-1)(-2) \cdot (p-3)! \equiv -1 \mod p$, or

$$2 \cdot (p-3)! \equiv -1 \bmod p.$$

Multiplying both sides by 2^{p-2} gives $2^{p-1} \cdot (p-3)! \equiv -2^{p-2} \mod p$. But, by Fermat's Theorem, $2^{p-1} \equiv 1 \mod p$. So the last congruence reduces to

 $1 \cdot (p-3)! \equiv -2^{p-2} \mod p,$

and so $p|(p-3)! + 2^{p-2}$.

Q10: Let r_1, r_2, \dots, r_{p-1} be a reduced residue system modulo a prime $p \ge 3$. Prove that

$$p|r_1 + r_2 + \dots + r_{p-1}$$
.

Solution: We are given that the set $T = \{r_1, r_2, \dots, r_{p-1}\}$ is a RRS_p . Note first that the set $S = \{1, 2, \dots, p-1\}$ is a RRS_p . Thus every element of T is congruent to one element of S, and no two elements of T are congruent to the same element of S:

If $r_i \equiv a \mod p$ and $r_j \equiv a \mod p$, where $1 \le i < j \le p - 1$ and $1 \le a \le p - 1$, then $r_i \equiv r_j \mod p$, contradicting the given assumption that the set T is a RRS_p .

This implies that there is a one-to-one correspondence (via \equiv) between the elements of *T* and the elements of *S*:

$$\left\{r_1, r_2, \cdots, r_{p-1}\right\} \stackrel{\equiv}{\leftrightarrow} \{1, 2, \cdots, p-1\}$$

(Not necessarily in the same order). Thus, we have

$$r_1 + r_2 + \dots + r_{p-1} \equiv 1 + 2 + \dots + (p-1) \mod p.$$

Since $1 + 2 + \dots + (p - 1) = \frac{p-1}{2}p$ and $\frac{p-1}{2}$ is an integer, then

$$1+2+\dots+(p-1)\equiv 0 \bmod p,$$

and hence

$$r_1 + r_2 + \dots + r_{p-1} \equiv 0 \mod p_p$$

which is the same thing as $p|r_1 + r_2 + \cdots + r_{p-1}$.