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Department of Mathematics 

Math 427, Exam I, Term 242. 

Part I (50 points) 

1. [10 points] Find all integers 𝑛 such that 5𝑛 + 3|7𝑛 + 3.  

2. [10 points] Use Fermat’s Factorization method to find, if possible, two nontrivial 

factors of the number 846319.  

3. [10 points] Solve 2025𝑥 − 1446𝑦 = 6 in integers.   

4. [10 points] Find the remainder when Fermat Number 𝐹100 = 22100
+ 1 is 

divided by 7.  

5. [10 points] Determine whether or not 70 = 2 ∙ 5 ∙ 7 is a pseudoprime to the 

base 11. 

Part II (50 points) 

6. [10 points] Prove that 𝑛 + 1|(2𝑛
𝑛

) for any integer 𝑛 ≥ 1.   

7. [10 points] Let 𝑎 𝑎𝑛𝑑 𝑏 be positive integers. Let [𝑎, 𝑏] = 𝑚 and write 𝑚 = 𝑎𝛼 

and 𝑚 = 𝑏𝛽 for some positive integers 𝛼 𝑎𝑛𝑑 𝛽. Prove that (𝛼, 𝛽) = 1.  

8. [10 points] Prove that the following fraction is in lowest form for any integer 𝑛:  

𝑛2 + 𝑛 − 1

2𝑛3 + 𝑛2 − 𝑛 + 1
. 

9. [10 points] Let 𝑝 ≥ 3 be a prime number. Prove that 𝑝|(𝑝 − 3)! + 2𝑝−2. Hint: 

Use Wilson’s Theorem and Fermat’s Theorem.  

10. [10 points] Let 𝑟1, 𝑟2, ⋯ , 𝑟𝑝−1 be a reduced residue system modulo a prime 𝑝 ≥

3. Prove that  

𝑝|𝑟1 + 𝑟2 + ⋯ + 𝑟𝑝−1. 

 

Good luck, 

Ibrahim Al-Rasasi 

 



Solutions 

Q1: Find all integers 𝑛 such that 5𝑛 + 3|7𝑛 + 3.  

Solution: Note that 7 ∙ (5𝑛 + 3) − 5 ∙ (7𝑛 + 3) = 6. Then 5𝑛 + 3|7𝑛 + 3 if and 

only if 5𝑛 + 3|6. This implies that 5𝑛 + 3 = ±1 𝑜𝑟 ± 2 𝑜𝑟 ± 3 𝑜𝑟 ± 6. Solving, 

we conclude that the only possible integers are 𝑛 = −1 and 𝑛 = 0.  

 

Q2: Use Fermat’s Factorization method to find, if possible, two nontrivial factors of 

the number 846319.  

Solution: As √846319 ≈ 919.56, we start by taking 𝑥 = 920, 921, 922, ⋯.  

Now  

𝑥2 − 846319 = 9202 − 846319 = 81 = 92, a square. 

Then 846319 = 9202 − 92 = (920 − 9)(920 + 9) = 911 × 929.  

 

Q3: Solve 2025𝑥 − 1446𝑦 = 6 in integers.   

Solution: We use the Euclidean algorithm to find (2025, 1446):  

2025 = 1446 (1) + 579, 

1446 = 579(2) + 288, 

579 = 288(2) + 3, 

288 = 3(96). 

Thus (2025, 1446) = 3 and 3|6 and hence the equation is solvable. Solving 

backward for the remainders we find that  

3 = 2025(5) − 1446(7). 

Multiplying by 2, we get  

6 = 2025(10) − 1446(14). 

Thus (𝑥0, 𝑦0) = (10, 14) is one solution of the equation. All other solutions are  



𝑥 = 10 + (
1446

3
) 𝑡 = 10 + 482𝑡, 𝑦 = 14 + (

2025

3
) 𝑡 = 14 + 675𝑡, 𝑡 ∈ ℤ. 

 

Q4: Find the remainder when Fermat Number 𝐹100 = 22100
+ 1 is divided by 7.  

Solution: Note that 23 ≡ 1 𝑚𝑜𝑑 7. Next we divide 2100 by 3: 2100 = 3𝑞 + 𝑟. Using 

congruences, 2 ≡ −1 𝑚𝑜𝑑 3 and so 2100 ≡ 1 𝑚𝑜𝑑 3. This implies that 2100 = 1 +

3𝑞 for some positive integer 𝑞. Now we have:  

23 ≡ 1 𝑚𝑜𝑑 7 ⇒ 23𝑞 ≡ 1 𝑚𝑜𝑑 7 ⇒ 23𝑞+1 ≡ 2 𝑚𝑜𝑑 7 

⇒ 22100
≡ 2 𝑚𝑜𝑑 7 ⇒ 𝐹100 ≡ 3 𝑚𝑜𝑑 7.  

We conclude that the required remainder is 3.  

 

Q5: Determine whether or not 70 is a pseudoprime to the base 11.   

Solution: We need to check whether or not 1169 ≡ 1 𝑚𝑜𝑑 70. As 70 = 2 ∙ 5 ∙ 7, we 

have first to compute 1169 modulo 2, 5, and 7.  

Since 11 ≡ 1 𝑚𝑜𝑑 2, then 1169 ≡ 1 𝑚𝑜𝑑 2. 

By Fermat’s Theorem, 114 ≡ 1 𝑚𝑜𝑑 5. As 69 = 4 ∙ 17 + 1 = 68 + 1, then 

raising to the 17th power, we get 1168 ≡ 1 𝑚𝑜𝑑 5, and multiplying by 11, we 

get 1169 ≡ 11 𝑚𝑜𝑑 5. But 11 ≡ 1 𝑚𝑜𝑑 5. Then 1169 ≡ 1 𝑚𝑜𝑑 5.  

Again, by Fermat’s Theorem, 116 ≡ 1 𝑚𝑜𝑑 7. As 69 = 6 ∙ 11 + 3 = 66 + 3, 

then raising to the 11th power, we get 1166 ≡ 1 𝑚𝑜𝑑 7, and multiplying by 

113, we get 1169 ≡ 113 𝑚𝑜𝑑 7. But 113 ≡ 43 = 8 ∙ 8 ≡ 1 ∙ 1 = 1 𝑚𝑜𝑑 7. 

Then 1169 ≡ 1 𝑚𝑜𝑑 7.  

Now since 1169 ≡ 1 𝑚𝑜𝑑 2, 1169 ≡ 1 𝑚𝑜𝑑 5, 𝑎𝑛𝑑 1169 ≡ 1 𝑚𝑜𝑑 7, then  

1169 ≡ 1 𝑚𝑜𝑑 [2, 5, 7], 

and hence 1169 ≡ 1 𝑚𝑜𝑑 70. We conclude that 70 is a pseudoprime to the base 

11.   

 



Q6: Prove that 𝑛 + 1|(2𝑛
𝑛

) for any integer 𝑛 ≥ 1.   

Solution: Note that  

(
2𝑛

𝑛
) =

(2𝑛)!

𝑛! ∙ 𝑛!
=

(𝑛 + 1) ∙ (𝑛 + 2) ∙ ⋯ (2𝑛 − 1) ∙ (2𝑛)

𝑛!
 

=
(𝑛 + 1) ∙ (𝑛 + 2) ∙ ⋯ (2𝑛 − 1) ∙ (2𝑛)

𝑛 ∙ (𝑛 − 1)!
 

=
𝑛 + 1

𝑛
∙

(𝑛 + 2) ∙ ⋯ (2𝑛 − 1) ∙ (2𝑛)

(𝑛 − 1)!
=

𝑛 + 1

𝑛
∙ 𝑎, 

where 𝑎 is some integer (the product of 𝑛 − 1 consecutive integers is divisible by 

(𝑛 − 1)!). This can be written as   

𝑛 ∙ (
2𝑛

𝑛
) = (𝑛 + 1) ∙ 𝑎. 

As 𝑛 + 1|𝑛 ∙ (2𝑛
𝑛

) and (𝑛 + 1, 𝑛) = 1, then 𝑛 + 1|(2𝑛
𝑛

).  

 

Q7: Let 𝑎 𝑎𝑛𝑑 𝑏 be positive integers. Let [𝑎, 𝑏] = 𝑚 and write 𝑚 = 𝑎𝛼 and 𝑚 =

𝑏𝛽 for some positive integers 𝛼 𝑎𝑛𝑑 𝛽. Prove that (𝛼, 𝛽) = 1.  

Solution: Let (𝑎, 𝑏) = 𝑑. As [𝑎, 𝑏](𝑎, 𝑏) = 𝑎𝑏, then 𝑚𝑑 = 𝑎𝑏. This implies that  

𝑎𝛼𝑑 = 𝑎𝑏 ⇒ 𝛼𝑑 = 𝑏, 

𝑏𝛽𝑑 = 𝑎𝑏 ⇒ 𝛽𝑑 = 𝑎. 

Now 𝑑 = (𝑎, 𝑏) = (𝛽𝑑, 𝛼𝑑) = 𝑑(𝛽, 𝛼) and hence (𝛼, 𝛽) = 1.  

 

Q8: Prove that the following fraction is in lowest form for any integer 𝑛:  

𝑛2 + 𝑛 − 1

2𝑛3 + 𝑛2 − 𝑛 + 1
. 

Solution: We need to show that (2𝑛3 + 𝑛2 − 𝑛 + 1, 𝑛2 + 𝑛 − 1) = 1. By dividing 

we get  



2𝑛3 + 𝑛2 − 𝑛 + 1 = (𝑛2 + 𝑛 − 1)(2𝑛 − 1) + 2𝑛. 

This implies that  

(2𝑛3 + 𝑛2 − 𝑛 + 1, 𝑛2 + 𝑛 − 1) = (𝑛2 + 𝑛 − 1, 2𝑛). 

Let (𝑛2 + 𝑛 − 1, 2𝑛) = 𝑔. As  

2(𝑛2 + 𝑛 − 1) − (2𝑛)(𝑛 + 1) = −2, 

then 𝑔|2 and hence either 𝑔 = 1 𝑜𝑟 𝑔 = 2. But 𝑛2 + 𝑛 − 1 = 𝑛(𝑛 + 1) − 1 is odd 

(as 𝑛(𝑛 + 1) is even). Then 𝑔 = 1 and so the given fraction is in lowest form.   

 

Q9: Let 𝑝 ≥ 3 be a prime number. Prove that 𝑝|(𝑝 − 3)! + 2𝑝−2. Hint: Use Wilson’s 

Theorem and Fermat’s Theorem.  

Solution: By Wilson’s Theorem, (𝑝 − 1)! ≡ −1 𝑚𝑜𝑑 𝑝 implies that  

(𝑝 − 1)(𝑝 − 2) ∙ (𝑝 − 3)! ≡ −1 𝑚𝑜𝑑 𝑝 

and hence (−1)(−2) ∙ (𝑝 − 3)! ≡ −1 𝑚𝑜𝑑 𝑝, or  

2 ∙ (𝑝 − 3)! ≡ −1 𝑚𝑜𝑑 𝑝. 

Multiplying both sides by 2𝑝−2 gives 2𝑝−1 ∙ (𝑝 − 3)! ≡ −2𝑝−2 𝑚𝑜𝑑 𝑝. But, by 

Fermat’s Theorem, 2𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝. So the last congruence reduces to  

1 ∙ (𝑝 − 3)! ≡ −2𝑝−2 𝑚𝑜𝑑 𝑝, 

and so 𝑝|(𝑝 − 3)! + 2𝑝−2.  

  

Q10: Let 𝑟1, 𝑟2, ⋯ , 𝑟𝑝−1 be a reduced residue system modulo a prime 𝑝 ≥ 3. Prove 

that  

𝑝|𝑟1 + 𝑟2 + ⋯ + 𝑟𝑝−1. 

Solution: We are given that the set 𝑇 = {𝑟1, 𝑟2, ⋯ , 𝑟𝑝−1} is a 𝑅𝑅𝑆𝑝. Note first that 

the set 𝑆 = {1, 2, ⋯ , 𝑝 − 1} is a 𝑅𝑅𝑆𝑝. Thus every element of 𝑇 is congruent to one 

element of 𝑆, and no two elements of 𝑇 are congruent to the same element of 𝑆:  



If 𝑟𝑖 ≡ 𝑎 𝑚𝑜𝑑 𝑝 and 𝑟𝑗 ≡ 𝑎 𝑚𝑜𝑑 𝑝, where 1 ≤ 𝑖 < 𝑗 ≤ 𝑝 − 1 and 1 ≤ 𝑎 ≤

𝑝 − 1, then 𝑟𝑖 ≡ 𝑟𝑗  𝑚𝑜𝑑 𝑝, contradicting the given assumption that the set 𝑇 

is a 𝑅𝑅𝑆𝑝.   

This implies that there is a one-to-one correspondence (via ≡) between the 

elements of 𝑇 and the elements of 𝑆: 

{𝑟1, 𝑟2, ⋯ , 𝑟𝑝−1}
≡
↔ {1, 2, ⋯ , 𝑝 − 1}. 

(Not necessarily in the same order). Thus, we have  

𝑟1 + 𝑟2 + ⋯ + 𝑟𝑝−1 ≡ 1 + 2 + ⋯ + (𝑝 − 1) 𝑚𝑜𝑑 𝑝. 

Since 1 + 2 + ⋯ + (𝑝 − 1) =
𝑝−1

2
𝑝 and 

𝑝−1

2
 is an integer, then  

1 + 2 + ⋯ + (𝑝 − 1) ≡ 0 𝑚𝑜𝑑 𝑝,  

and hence   

𝑟1 + 𝑟2 + ⋯ + 𝑟𝑝−1 ≡ 0 𝑚𝑜𝑑 𝑝, 

which is the same thing as 𝑝|𝑟1 + 𝑟2 + ⋯ + 𝑟𝑝−1.  

 

 

 

 

 

 

 

 

 

 

 

 


