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Math 427, Exam II, Term 242. 

Part I (60 points) 

1. [15 points] Solve 𝜙(𝑛) = 8 in positive integers.   

2. [10 points] Solve 2𝑥123 − 𝑥80 + 2 ≡ 0 𝑚𝑜𝑑 7.   

3. [10 points] Solve 𝑥3 − 2𝑥2 + 𝑥 − 2 ≡ 0 𝑚𝑜𝑑 72.   

4. [15 points]  

a. Decipher “QJO” if it is enciphered by the affine cipher 𝐶 ≡ 3𝑃 +

1 𝑚𝑜𝑑 26.   

b. In an RSA cipher, 𝑛 = 1483483 𝑎𝑛𝑑 𝜙(𝑛) = 1481040. Find the prime 

factors of 𝑛.  

5. [10 points] Find the number of zeros at the right end of 
(1111)!

(111)!10
.  

Part II (40 points) 

6. [10 points] Prove that 𝜙(𝑛3) = 𝑛2𝜙(𝑛) for any integer 𝑛 ≥ 1.   

7. [10 points] Describe all integers 𝑎 for which the following congruence has three 

solutions: (𝑎 + 4)𝑥2 + (𝑎3 − 2) ≡ 0 𝑚𝑜𝑑 3.  

8. [10 points] Let 𝑝 > 2 be a prime number and 𝑑 > 0 be an integer such that 

𝑑|𝑝 − 1. Prove that the congruence 𝑥𝑑 ≡ 1 𝑚𝑜𝑑 𝑝𝑘 has 𝑑 solutions for each 

integer 𝑘 ≥ 1.  Hint: Use Hensel’s Lemma. 

9. [10 points] Let 𝑥 be a real number. Prove that 5⟦2𝑥⟧ ≤ ⟦4𝑥⟧ + ⟦6𝑥⟧.   

Good luck, 

Ibrahim Al-Rasasi 
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Solutions 

Q1: Solve 𝜙(𝑛) = 8 in positive integers.    

Solution: We start by ruling out some possibilities of an integer 𝑛 to be a solution. 

If 𝑛 is divisibly by three distinct odd primes 𝑝, 𝑞 𝑎𝑛𝑑 𝑟, then 

𝑝𝑞𝑟 |𝑛 ⇒ 𝜙(𝑝𝑞𝑟)| 𝜙(𝑛) ⇒ (𝑝 − 1)(𝑞 − 1)(𝑟 − 1)|8, 

which is not possible since (𝑝 − 1)(𝑞 − 1)(𝑟 − 1) ≥ (3 − 1)(5 − 1)(7 − 1) > 8. 

So, 𝑛 can have at most two distinct odd primes.  

If 2𝛼|𝑛, 𝛼 ≥ 5, then  

𝜙(2𝛼)|𝜙(𝑛) ⇒ 2𝛼−1|8 

which is not possible since 16|2𝛼−1.   

If 𝑝𝛼|𝑛, (𝑝 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑟𝑖𝑚𝑒, 𝛼 ≥ 2), then  

𝜙(𝑝𝛼)|𝜙(𝑛) ⇒ 𝑝𝛼−1(𝑝 − 1)|8 ⇒ 𝑝|8, 

which is not possible for an odd prime 𝑝.  

The above analysis implies that a solution of the equation 𝜙(𝑛) = 8 has to have 

one of the following forms:  

𝑛 = 2𝛼 , 𝑝, 2𝛼𝑝, 𝑝𝑞, 2𝛼𝑝𝑞,   

where 𝑝 𝑎𝑛𝑑 𝑞 are distinct odd primes (say 𝑝 < 𝑞) and 1 ≤ 𝛼 ≤ 4.   

Now  

▪ 𝑛 = 2𝛼
𝜙
⇒ 8 = 2𝛼−1 ⇒ 𝛼 = 4 ⇒ 𝑛 = 16, 

▪ 𝑛 = 𝑝
𝜙
⇒ 8 = 𝑝 − 1 ⇒ 𝑝 = 9, not prime, 

▪ 𝑛 = 2𝛼𝑝
𝜙
⇒ 8 = 2𝛼−1(𝑝 − 1) ⇒ (𝛼, 𝑝) = (2, 5), (3, 3) ⇒ 𝑛 = 20, 24, 

▪ 𝑛 = 𝑝𝑞
𝜙
⇒ 8 = (𝑝 − 1)(𝑞 − 1) ⇒ 𝑝 = 3, 𝑞 = 5 ⇒ 𝑛 = 15,  

▪ 𝑛 = 2𝛼𝑝𝑞
𝜙
⇒ 8 = 2𝛼−1(𝑝 − 1)(𝑞 − 1) ⇒ (𝛼, 𝑝, 𝑞) = (1, 3, 5) ⇒ 𝑛 = 30. 



We conclude that the solutions of the equation 𝜙(𝑛) = 8 are 𝑛 =

15, 16, 20, 24, 30.  

 

Q2: Solve 2𝑥123 − 𝑥80 + 2 ≡ 0 𝑚𝑜𝑑 7.   

Solution: First we reduce the power of the polynomial congruence. By Fermat’s 

Theorem, 𝑎7 ≡ 𝑎 𝑚𝑜𝑑 7 for any integer 𝑎. This implies  

𝑎80 = 𝑎77𝑎3 ≡ 𝑎11𝑎3 = 𝑎14 ≡ 𝑎2 𝑚𝑜𝑑 7, 

𝑎123 = 𝑎17×7𝑎4 ≡ 𝑎17𝑎4 = 𝑎21 ≡ 𝑎3 𝑚𝑜𝑑 7. 

Thus, the given congruence is equivalent to the congruence 

2𝑥3 − 𝑥2 + 2 ≡ 0 𝑚𝑜𝑑 7. 

By checking 𝐶𝑅𝑆7 = {0, ±1, ±2, ±3}, we find that the congruence has one solution 

𝑥 ≡ 2 𝑚𝑜𝑑 7.  

  

Q3: Solve 𝑥3 − 2𝑥2 + 𝑥 − 2 ≡ 0 𝑚𝑜𝑑 72.     

Solution: Checking 𝐶𝑅𝑆7 = {0, ±1, ±2, ±3}, we see that the congruence  

𝑥3 − 2𝑥2 + 𝑥 − 2 ≡ 0 𝑚𝑜𝑑 7 

has one solution 𝑥1 ≡ 2 𝑚𝑜𝑑 7 only.  

Let 𝑓(𝑥) = 𝑥3 − 2𝑥2 + 𝑥 − 2. Then 𝑓′(𝑥) = 3𝑥2 − 4𝑥 + 1. Since 𝑓′(2) = 5 ≢

0 𝑚𝑜𝑑 7, then 𝑥1 is a nonsingular solution for 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 7, hence it can be 

lifted to a unique solution for 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 72 and the solution is given by   

𝑥2 ≡ 𝑥1 − 𝑓(𝑥1) 𝑓′(𝑥1)̅̅ ̅̅ ̅̅ ̅̅   𝑚𝑜𝑑 72 

≡ 2 − 0 ∙ 5̅ 𝑚𝑜𝑑 72. 

Thus 𝑥2 ≡ 2 𝑚𝑜𝑑 72 is the solution of 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 72.  

 

Q4:  



Part (a): Decipher “QJO” if it is enciphered by the affine cipher 𝐶 ≡ 3𝑃 +

1 𝑚𝑜𝑑 26.   

Solution: Multiplying by 9, we get 9𝐶 ≡ 𝑃 + 9 𝑚𝑜𝑑 26 and hence  

𝑃 ≡ 9(𝐶 − 1) 𝑚𝑜𝑑 26. 

𝑄 ↔ 16: 𝑃 ≡ 9(15) ≡ 5 𝑚𝑜𝑑 26; 5 ↔ 𝐹, 

𝐽 ↔ 9: 𝑃 ≡ 9(8) ≡ 20 𝑚𝑜𝑑 26; 20 ↔ 𝑈, 

𝑂 ↔ 14: 𝑃 ≡ 9(13) ≡ 13 𝑚𝑜𝑑 26; 13 ↔ 𝑁. 

The original message is “FUN”.  

 

Part (b): In an RSA cipher, 𝑛 = 1483483 𝑎𝑛𝑑 𝜙(𝑛) = 1481040. Find the prime 

factors of 𝑛.  

Solution: As 𝑛 = 1483483 𝑎𝑛𝑑 𝜙(𝑛) = 1481040, then  

𝑝 + 𝑞 = 𝑛 − 𝜙(𝑛) + 1 = 2444, 

𝑝 − 𝑞 = √(𝑝 + 𝑞)2 − 4𝑛 = √39204 = 198. 

Adding, we get 2𝑝 = 2642 and hence 𝑝 = 1321. Using the first equation, we get 

𝑞 = 1123.  

 

Q5: Find the number of zeros at the right end of 
(1111)!

(111)!10
.  

Solution: Let 5𝛼||(1111)! And 5𝛽||(111)!. Note first that 1111 < 55 and 111 <

53. Then we have   

𝛼 = ∑ ⟦
1111

5𝑖
⟧

∞

𝑖=1
= ⟦

1111

5
⟧ + ⟦

1111

25
⟧ + ⟦

1111

125
⟧ + ⟦

1111

625
⟧ 

= 222 + 44 + 8 + 1 = 275. 

𝛽 = ∑ ⟦
111

5𝑖
⟧

∞

𝑖=1
= ⟦

111

5
⟧ + ⟦

111

25
⟧ = 22 + 4 = 26. 



The number of zeros at the right end of 
(1111)!

(111)!10
 is 275 − 26(10) = 15.  

 

Q6: Prove that 𝜙(𝑛3) = 𝑛2𝜙(𝑛) for any integer 𝑛 ≥ 1.   

Solution: We use the formula of 𝜙:  

𝜙(𝑛3) = 𝑛3 ∏ (1 −
1

𝑝
)

𝑝|𝑛3
 

= 𝑛3 ∏ (1 −
1

𝑝
)

𝑝|𝑛
 

= 𝑛2 [𝑛 ∏ (1 −
1

𝑝
)

𝑝|𝑛
] = 𝑛2 𝜙(𝑛). 

The second equality follows because 𝑝|𝑛3 if and only if 𝑝|𝑛. 

 

Q7: Describe all integers 𝑎 for which the following congruence has three solutions: 

(𝑎 + 4)𝑥2 + (𝑎3 − 2) ≡ 0 𝑚𝑜𝑑 3.  

Solution: By Lagrange’s Theorem, if the degree of the polynomial congruence 

𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 𝑝, (𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒), is 𝑛, then it has at most 𝑛 solutions. In our case, for 

the number of solutions (3) to be more than the degree (2), then the polynomial 

congruence must be the zero congruence: that is,  

𝑎 + 4 ≡ 0 𝑚𝑜𝑑 3 𝑎𝑛𝑑 𝑎3 − 2 ≡ 0 𝑚𝑜𝑑 3. 

Solve each congruence:  

𝑎 + 4 ≡ 0 𝑚𝑜𝑑 3 ⇒ 𝑎 ≡ 2 𝑚𝑜𝑑 3, 

𝑎3 − 2 ≡ 0 𝑚𝑜𝑑 3 ⇒ 𝑎 ≡ 2 𝑚𝑜𝑑 3. 

We conclude that the given congruence has three solutions if and only if 𝑎 ≡

2 𝑚𝑜𝑑 3.  

 



Q8: Let 𝑝 > 2 be a prime number and 𝑑 > 0 be an integer such that 𝑑|𝑝 − 1. Prove 

that the congruence 𝑥𝑑 ≡ 1 𝑚𝑜𝑑 𝑝𝑘  has 𝑑 solutions for each integer 𝑘 ≥ 1.  

Solution: The case 𝑘 = 1 is a lemma in the course; that is, since 𝑑|𝑝 − 1, then the 

congruence  

𝑥𝑑 ≡ 1 𝑚𝑜𝑑 𝑝 ⋯ ⋯ (∗) 

has 𝑑 solutions.  

Let 𝑘 ≥ 2 be an integer. Let 𝑓(𝑥) = 𝑥𝑑 − 1. Then 𝑓′(𝑥) = 𝑑 𝑥𝑑−1.  

Let 𝑥0 be one solution of (∗): 𝑓(𝑥0) ≡ 0 𝑚𝑜𝑑 𝑝 (which is the same thing as 𝑥0
𝑑 ≡

1 𝑚𝑜𝑑 𝑝). Since 𝑑|𝑝 − 1, then 𝑑 ≤ 𝑝 − 1 < 𝑝 and hence (𝑑, 𝑝) = 1. Also, as 𝑥0
𝑑 ≡

1 𝑚𝑜𝑑 𝑝, then (𝑥0
𝑑 , 𝑝) = (1, 𝑝) = 1 and hence (𝑥0, 𝑝) = 1. We conclude that 

𝑓′(𝑥0) = 𝑑 𝑥0
𝑑−1 ≢ 0 𝑚𝑜𝑑 𝑝, and hence 𝑥0 is a nonsingular solution. By Hensel’s 

Lemma, 𝑥0 can be lifted to a unique solution for the congruence 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 𝑝𝑘  

for every integer 𝑘 ≥ 2. Since (∗) has 𝑑 nonsingular solutions, and each one can be 

lifted to a unique solution for 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 𝑝𝑘 (for each integer 𝑘 ≥ 2), then the 

congruence 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 𝑝𝑘 has 𝑑 solutions for each integer 𝑘 ≥ 1.   

 

Q9: Let 𝑥 be a real number. Prove that 5⟦2𝑥⟧ ≤ ⟦4𝑥⟧ + ⟦6𝑥⟧.   

Solution: We use the inequality  

⟦𝑧⟧ + ⟦𝑤⟧ ≤ ⟦𝑧 + 𝑤⟧, 𝑧, 𝑤 ∈ ℝ. 

We proceed as follows:   

5⟦2𝑥⟧ = ⟦2𝑥⟧ + (⟦2𝑥⟧ + ⟦2𝑥⟧) + (⟦2𝑥⟧ + ⟦2𝑥⟧) 

≤ ⟦2𝑥⟧ + ⟦4𝑥⟧ + ⟦4𝑥⟧ 

≤ ⟦4𝑥⟧ + ⟦2𝑥 + 4𝑥⟧.    

Thus, 5⟦2𝑥⟧ ≤ ⟦4𝑥⟧ + ⟦6𝑥⟧. 

 

 

 


