KFUPM

Department of Mathematics

Math 427, Exam II, Term 242.

Part I (60 points)

- **1. [15 points]** Solve $\phi(n) = 8$ in positive integers.
- **2.** [10 points] Solve $2x^{123} x^{80} + 2 \equiv 0 \mod 7$.
- **3.** [10 points] Solve $x^3 2x^2 + x 2 \equiv 0 \mod 7^2$.
- 4. [15 points]
 - a. Decipher "QJO" if it is enciphered by the affine cipher $C \equiv 3P + 1 \mod 26$.
 - b. In an RSA cipher, n = 1483483 and $\phi(n) = 1481040$. Find the prime factors of n.
- 5. [10 points] Find the number of zeros at the right end of $\frac{(1111)!}{(111)!^{10}}$.

Part II (40 points)

- **6. [10 points]** Prove that $\phi(n^3) = n^2 \phi(n)$ for any integer $n \ge 1$.
- **7. [10 points]** Describe all integers *a* for which the following congruence has three solutions: $(a + 4)x^2 + (a^3 2) \equiv 0 \mod 3$.
- **8.** [10 points] Let p > 2 be a prime number and d > 0 be an integer such that d|p 1. Prove that the congruence $x^d \equiv 1 \mod p^k$ has d solutions for each integer $k \ge 1$. Hint: Use Hensel's Lemma.
- **9. [10 points]** Let x be a real number. Prove that $5[[2x]] \le [[4x]] + [[6x]]$.

Good luck,

Ibrahim Al-Rasasi

А	В	С	D	E	F	G	Н	1	J	К	L	Μ
00	01	02	03	04	05	06	07	08	09	10	11	12

Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Solutions

Q1: Solve $\phi(n) = 8$ in positive integers.

Solution: We start by ruling out some possibilities of an integer n to be a solution. If n is divisibly by three distinct odd primes p, q and r, then

$$pqr\left|n\Rightarrow\phi(pqr)\right|\phi(n)\Rightarrow(p-1)(q-1)(r-1)|8,$$

which is not possible since $(p-1)(q-1)(r-1) \ge (3-1)(5-1)(7-1) > 8$. So, *n* can have at most two distinct odd primes.

If $2^{\alpha} | n, \alpha \ge 5$, then

$$\phi(2^{\alpha})|\phi(n) \Rightarrow 2^{\alpha-1}|8$$

which is not possible since $16|2^{\alpha-1}$.

If $p^{\alpha}|n$, (*p* is an odd prime, $\alpha \geq 2$), then

$$\phi(p^{\alpha})|\phi(n) \Rightarrow p^{\alpha-1}(p-1)|8 \Rightarrow p|8,$$

which is not possible for an odd prime p.

The above analysis implies that a solution of the equation $\phi(n) = 8$ has to have one of the following forms:

$$n = 2^{\alpha}$$
, p , $2^{\alpha}p$, pq , $2^{\alpha}pq$,

where *p* and *q* are distinct odd primes (say p < q) and $1 \le \alpha \le 4$.

Now

•
$$n = 2^{\alpha} \stackrel{\phi}{\Rightarrow} 8 = 2^{\alpha-1} \Rightarrow \alpha = 4 \Rightarrow n = 16,$$

•
$$n = p \stackrel{\varphi}{\Rightarrow} 8 = p - 1 \Rightarrow p = 9$$
, not prime,

• $n = 2^{\alpha} p \stackrel{\phi}{\Rightarrow} 8 = 2^{\alpha-1} (p-1) \Rightarrow (\alpha, p) = (2, 5), (3, 3) \Rightarrow n = 20, 24,$

•
$$n = pq \stackrel{\psi}{\Rightarrow} 8 = (p-1)(q-1) \Rightarrow p = 3, q = 5 \Rightarrow n = 15,$$

• $n = 2^{\alpha} pq \stackrel{\phi}{\Rightarrow} 8 = 2^{\alpha-1} (p-1)(q-1) \Rightarrow (\alpha, p, q) = (1, 3, 5) \Rightarrow n = 30.$

We conclude that the solutions of the equation $\phi(n) = 8$ are n = 15, 16, 20, 24, 30.

Q2: Solve $2x^{123} - x^{80} + 2 \equiv 0 \mod 7$.

Solution: First we reduce the power of the polynomial congruence. By Fermat's Theorem, $a^7 \equiv a \mod 7$ for any integer *a*. This implies

$$a^{80} = a^{77}a^3 \equiv a^{11}a^3 = a^{14} \equiv a^2 \mod 7,$$

 $a^{123} = a^{17\times7}a^4 \equiv a^{17}a^4 = a^{21} \equiv a^3 \mod 7.$

Thus, the given congruence is equivalent to the congruence

$$2x^3 - x^2 + 2 \equiv 0 \mod 7.$$

By checking $CRS_7 = \{0, \pm 1, \pm 2, \pm 3\}$, we find that the congruence has one solution $x \equiv 2 \mod 7$.

Q3: Solve $x^3 - 2x^2 + x - 2 \equiv 0 \mod 7^2$.

Solution: Checking $CRS_7 = \{0, \pm 1, \pm 2, \pm 3\}$, we see that the congruence

$$x^3 - 2x^2 + x - 2 \equiv 0 \mod 7$$

has one solution $x_1 \equiv 2 \mod 7$ only.

Let $f(x) = x^3 - 2x^2 + x - 2$. Then $f'(x) = 3x^2 - 4x + 1$. Since $f'(2) = 5 \neq 0 \mod 7$, then x_1 is a nonsingular solution for $f(x) \equiv 0 \mod 7$, hence it can be lifted to a unique solution for $f(x) \equiv 0 \mod 7^2$ and the solution is given by

$$x_2 \equiv x_1 - f(x_1) \overline{f'(x_1)} \mod 7^2$$
$$\equiv 2 - 0 \cdot \overline{5} \mod 7^2.$$

Thus $x_2 \equiv 2 \mod 7^2$ is the solution of $f(x) \equiv 0 \mod 7^2$.

Q4:

Part (a): Decipher "QJO" if it is enciphered by the affine cipher $C \equiv 3P + 1 \mod 26$.

Solution: Multiplying by 9, we get $9C \equiv P + 9 \mod 26$ and hence

 $P \equiv 9(C - 1) \mod 26.$ $Q \leftrightarrow 16: P \equiv 9(15) \equiv 5 \mod 26; 5 \leftrightarrow F,$ $J \leftrightarrow 9: P \equiv 9(8) \equiv 20 \mod 26; 20 \leftrightarrow U,$ $0 \leftrightarrow 14: P \equiv 9(13) \equiv 13 \mod 26; 13 \leftrightarrow N.$

The original message is "FUN".

Part (b): In an RSA cipher, n = 1483483 and $\phi(n) = 1481040$. Find the prime factors of n.

Solution: As n = 1483483 and $\phi(n) = 1481040$, then

$$p + q = n - \phi(n) + 1 = 2444,$$
$$p - q = \sqrt{(p + q)^2 - 4n} = \sqrt{39204} = 198.$$

Adding, we get 2p = 2642 and hence p = 1321. Using the first equation, we get q = 1123.

Q5: Find the number of zeros at the right end of $\frac{(1111)!}{(111)!^{10}}$.

Solution: Let $5^{\alpha}||(1111)|$ And $5^{\beta}||(111)|$. Note first that $1111 < 5^5$ and $111 < 5^3$. Then we have

$$\alpha = \sum_{i=1}^{\infty} \left[\frac{1111}{5^i} \right] = \left[\frac{1111}{5} \right] + \left[\frac{1111}{25} \right] + \left[\frac{1111}{125} \right] + \left[\frac{1111}{625} \right]$$
$$= 222 + 44 + 8 + 1 = 275.$$
$$\beta = \sum_{i=1}^{\infty} \left[\frac{111}{5^i} \right] = \left[\frac{111}{5} \right] + \left[\frac{111}{25} \right] = 22 + 4 = 26.$$

The number of zeros at the right end of $\frac{(1111)!}{(111)!^{10}}$ is 275 - 26(10) = 15.

Q6: Prove that $\phi(n^3) = n^2 \phi(n)$ for any integer $n \ge 1$.

Solution: We use the formula of ϕ :

$$\phi(n^3) = n^3 \prod_{p|n^3} \left(1 - \frac{1}{p}\right)$$
$$= n^3 \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
$$= n^2 \left[n \prod_{p|n} \left(1 - \frac{1}{p}\right)\right] = n^2 \phi(n)$$

The second equality follows because $p|n^3$ if and only if p|n.

Q7: Describe all integers *a* for which the following congruence has three solutions: $(a + 4)x^2 + (a^3 - 2) \equiv 0 \mod 3$.

Solution: By Lagrange's Theorem, if the degree of the polynomial congruence $f(x) \equiv 0 \mod p$, (p is prime), is n, then it has at most n solutions. In our case, for the number of solutions (3) to be more than the degree (2), then the polynomial congruence must be the zero congruence: that is,

$$a + 4 \equiv 0 \mod 3$$
 and $a^3 - 2 \equiv 0 \mod 3$.

Solve each congruence:

$$a + 4 \equiv 0 \mod 3 \Rightarrow a \equiv 2 \mod 3,$$

 $a^3 - 2 \equiv 0 \mod 3 \Rightarrow a \equiv 2 \mod 3.$

We conclude that the given congruence has three solutions if and only if $a \equiv 2 \mod 3$.

Q8: Let p > 2 be a prime number and d > 0 be an integer such that d|p - 1. Prove that the congruence $x^d \equiv 1 \mod p^k$ has d solutions for each integer $k \ge 1$.

Solution: The case k = 1 is a lemma in the course; that is, since d|p - 1, then the congruence

$$x^d \equiv 1 \mod p \cdots \cdots (*)$$

has d solutions.

Let $k \ge 2$ be an integer. Let $f(x) = x^d - 1$. Then $f'(x) = d x^{d-1}$.

Let x_0 be one solution of (*): $f(x_0) \equiv 0 \mod p$ (which is the same thing as $x_0^d \equiv 1 \mod p$). Since d|p-1, then $d \leq p-1 < p$ and hence (d,p) = 1. Also, as $x_0^d \equiv 1 \mod p$, then $(x_0^d, p) = (1, p) = 1$ and hence $(x_0, p) = 1$. We conclude that $f'(x_0) = d x_0^{d-1} \not\equiv 0 \mod p$, and hence x_0 is a nonsingular solution. By Hensel's Lemma, x_0 can be lifted to a unique solution for the congruence $f(x) \equiv 0 \mod p^k$ for every integer $k \geq 2$. Since (*) has d nonsingular solutions, and each one can be lifted to a unique solution for $f(x) \equiv 0 \mod p^k$ (for each integer $k \geq 2$), then the congruence $f(x) \equiv 0 \mod p^k$ has d solutions for each integer $k \geq 2$).

Q9: Let x be a real number. Prove that $5[[2x]] \le [[4x]] + [[6x]]$.

Solution: We use the inequality

 $\llbracket z \rrbracket + \llbracket w \rrbracket \le \llbracket z + w \rrbracket, \qquad z, w \in \mathbb{R}.$

We proceed as follows:

$$5[[2x]] = [[2x]] + ([[2x]] + [[2x]]) + ([[2x]] + [[2x]])$$
$$\leq [[2x]] + [[4x]] + [[4x]]$$
$$\leq [[4x]] + [[2x + 4x]].$$

Thus, $5[[2x]] \le [[4x]] + [[6x]]$.