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Math 427, Exam Il, Term 242.

Part | (60 points)

1. [15 points] Solve ¢p(n) = 8 in positive integers.
2. [10 points] Solve 2x123 — x8 + 2 = 0 mod 7.
3. [10 points] Solve x3 — 2x%2 + x — 2 = 0 mod 7.
4. [15 points]

a. Decipher “QJO” if it is enciphered by the affine cipher C =3P +

1 mod 26.

b. In an RSA cipher, n = 1483483 and ¢(n) = 1481040. Find the prime

factors of n.
(1111)!
(111)!110°

5. [10 points] Find the number of zeros at the right end of

Part Il (40 points)

6. [10 points] Prove that ¢(n3) = n?¢(n) for any integer n > 1.

7. [10 points] Describe all integers a for which the following congruence has three

solutions: (a + 4)x2 + (a® — 2) = 0 mod 3.

8. [10 points] Let p > 2 be a prime number and d > 0 be an integer such that
d|p — 1. Prove that the congruence x% = 1 mod p* has d solutions for each

integer k = 1. Hint: Use Hensel’s Lemma.
9. [10 points] Let x be a real number. Prove that 5[[2x] < [4x] + [6x].

Good luck,

Ibrahim Al-Rasasi
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Solutions
Q1: Solve ¢p(n) = 8 in positive integers.
Solution: We start by ruling out some possibilities of an integer n to be a solution.

If n is divisibly by three distinct odd primes p, g and r, then

()= @—-D(g-D{r-1I8,

which is not possible since (p — 1)(¢g—1)(r—-1) =B -1)(5—-1)(7—-1) > 8.
So, n can have at most two distinct odd primes.

pqr |n= ¢(pqr)

If 2%|n, @ = 5, then

¢(29)|p(n) = 2°74|8
which is not possible since 16|24,

If p|n, (pis anodd prime,a = 2), then

PP p(m) =p*(p—1)[8=pl8,
which is not possible for an odd prime p.

The above analysis implies that a solution of the equation ¢p(n) = 8 has to have
one of the following forms:

n=2%p,2%,pq,2%pq,
where p and q are distinct odd primes (sayp < g)and 1 < a < 4.
Now

= n=2“2>8=2“‘1=>a=4:>n=16,

. n=pi—p>8=p—1:,~p=9,notprime,

e n=29p 38 =201(p_1)> (a,p) = (2.5),(3,3) =>7n = 20,24,

. n=pq(=j)>8=(p—1)(q—1):,~p=3,q=5=>n=15,

" n= Z“pq(=p>8=2“‘1(p—1)(q—1)=>(a,p,q) = (1,3,5) = n = 30.



We conclude that the solutions of the equation ¢(n) =8 are n=
15,16, 20, 24, 30.

Q2: Solve 2x1%3 — x80 + 2 = 0 mod 7.

Solution: First we reduce the power of the polynomial congruence. By Fermat’s
Theorem, a’ = a mod 7 for any integer a. This implies

80 — 47743 =

a a® =a''a® = a™ = a’mod 7,

123 — 417%7 54 = q17g% = g2 = q3 mod 7.

a
Thus, the given congruence is equivalent to the congruence
2x3 —x%>+2=0mod 7.

By checking CRS, = {0, +1, +2, +3}, we find that the congruence has one solution
x =2mod?7.

Q3: Solve x3 — 2x2 + x — 2 = 0 mod 7°.

Solution: Checking CRS, = {0, +1, +2, +3}, we see that the congruence
x3—2x*+x—2=0mod7

has one solution x; = 2 mod 7 only.

Let f(x) =x3—2x%2+x—2. Then f'(x) =3x%>—4x+ 1. Since f'(2) =5 %
0 mod 7, then x, is a nonsingular solution for f(x) = 0 mod 7, hence it can be
lifted to a unique solution for f(x) = 0 mod 72 and the solution is given by

Xy = x, — f(xq) f'(x1) mod 7?
=2—0-5mod 72

Thus x, = 2 mod 72 is the solution of f(x) = 0 mod 72.

Q4.



Part (a): Decipher “QJO” if it is enciphered by the affine cipher C = 3P +
1 mod 26.

Solution: Multiplying by 9, we get 9C = P + 9 mod 26 and hence
P =9(C — 1) mod 26.

Q & 16:P =9(15) =5mod 26;5 < F,
Je 9:P=9(8) =20mod 26;20 & U,

0 < 14:P =9(13) = 13 mod 26;13 < N.

The original message is “FUN”.

Part (b): In an RSA cipher, n = 1483483 and ¢(n) = 1481040. Find the prime
factors of n.

Solution: As n = 1483483 and ¢(n) = 1481040, then
p+qg=n—¢n)+1=2444,

p—q=+(p+q)?—4n =39204 = 198.

Adding, we get 2p = 2642 and hence p = 1321. Using the first equation, we get
q = 1123.

(1111)!
(111)!110°

Solution: Let 5%||(1111)! And 58]|(111)!. Note first that 1111 < 5% and 111 <
53. Then we have

_ 0 [[1111” _ [[1111” 4 [[1111]] N [[1111]] N [[1111]]
*= Z.zl 5t | [ s 25 125 625
=222+44+8+1=275.

B z“’ [[111]] B [[111]] N [[111” C 9244 = 26
’B_izlsi_S 251 o

Q5: Find the number of zeros at the right end of




(1111)!
11

e 18 275 = 26(10) = 15,

The number of zeros at the right end of

Q6: Prove that ¢p(n®) = n?¢p(n) for any integer n > 1.

Solution: We use the formula of ¢:

=n2

The second equality follows because p|n? if and only if p|n.

Q7: Describe all integers a for which the following congruence has three solutions:
(a +4)x? + (a® — 2) = 0 mod 3.

Solution: By Lagrange’s Theorem, if the degree of the polynomial congruence
f(x) = 0 mod p, (p is prime), is n, then it has at most n solutions. In our case, for
the number of solutions (3) to be more than the degree (2), then the polynomial
congruence must be the zero congruence: that is,

a+4=0mod3anda®—2=0mod 3.

Solve each congruence:
a+4=0mod3=a=2mod3,

a—2=0mod3=a=2mod3.

We conclude that the given congruence has three solutions if and only if a =
2 mod 3.



Q8: Let p > 2 be a prime number and d > 0 be aninteger such that d|p — 1. Prove
that the congruence x% = 1 mod p* has d solutions for each integer k > 1.

Solution: The case k = 1 is a lemma in the course; that is, since d|p — 1, then the
congruence

has d solutions.
Let k > 2 be aninteger. Let f(x) = x% — 1. Then f'(x) = d x%™ 1,

Let x, be one solution of (*¥): f(x,) = 0 mod p (which is the same thing as x& =
1 mod p). Since d|p — 1,thend < p — 1 < p and hence (d,p) = 1. Also, as x& =
1 mod p, then (xgl,p) = (1,p) =1 and hence (x,,p) = 1. We conclude that
f'(xy) = d x3t £ 0 mod p, and hence x, is a nonsingular solution. By Hensel’s
Lemma, x, can be lifted to a unique solution for the congruence f(x) = 0 mod p¥
for every integer k = 2. Since (*) has d nonsingular solutions, and each one can be
lifted to a unique solution for f(x) = 0 mod p* (for each integer k > 2), then the
congruence f(x) = 0 mod p* has d solutions for each integer k > 1.

Q9: Let x be a real number. Prove that 5[2x] < [4x] + [6x].
Solution: We use the inequality
[z] + [w] < [z + w], z,w € R.
We proceed as follows:
502x] = [2x] + ([2x] + [2x]) + ([2x] + [2x])

< [2x] + [4x] + [4x]

< [[4x] + [2x + 4x].
Thus, 5[2x] < [4x] + [6x].



